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ABSTRACT 
Creating software tutorials involves developing accurate code ex-
amples and explanatory text that engages and informs the reader. 
Large Language Models (LLMs) demonstrate a strong capacity to 
generate both text and code, but their potential to assist tutorial writ-
ing is unknown. By interviewing and observing seven experienced 
writers using OpenAI playground as an exploration environment, 
we uncover design opportunities for leveraging LLMs in software 
tutorial writing. Our fndings reveal background research, resource 
creation, and maintaining quality standards as critical areas where 
LLMs could signifcantly assist writers. We observe how tutorial 
writers generated tutorial content while exploring LLMs’ capabili-
ties, formulating prompts, verifying LLM outputs, and refecting on 
interaction goals and strategies. Our observation highlights that the 
unpredictability of LLM outputs and unintuitive interface design 
contributed to skepticism about LLM’s utility. Informed by these 
results, we contribute recommendations for designing LLM-based 
tutorial writing tools to mitigate usability challenges and harness 
LLMs’ full potential. 

CCS CONCEPTS 
• Human-centered computing → User studies; User interface 
design; • Software and its engineering → Software notations 
and tools. 
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1 INTRODUCTION 
Software tutorials refer to the instructional documentation intended 
to guide the readers progressively through tasks concerning soft-
ware features. Due to their accessible and engaging style and task-
oriented focus, tutorials are indispensable tools for readers learning 
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a new technology [40]. A study by Aghajani et al. [1] reveals that 
practitioners perceive tutorials as invaluable for numerous soft-
ware engineering tasks. Beyond supporting software users, tutorial 
creation signifcantly benefts its writers, including professional 
growth and learning [3, 50]. However, creating software tutorials in-
volves a complex interplay of many challenging aspects, including 
building sufcient technical background of the target technology, 
writing the reference programs, identifying relevant code snippets 
to include in the tutorial, clearly presenting and explaining code 
snippets, and formatting tutorials as incremental stages to facilitate 
learning [24, 25, 66]. Addressing these aspects insufciently can 
result in misleading or faulty content, resulting in poor tutorial 
quality [2]. 

Meanwhile, recent advances in language technology have at-
tracted notable attention for their potential in developing efective 
writing tools. In particular, Large Language Models (LLMs), ma-
chine learning models trained with textual data on massive scales 
to predict and generate language, are increasingly being used to 
support various aspects of creative writing such as ideation [34], 
text generation [12], and draft revision [14]. Nevertheless, their po-
tential in software tutorial writing is unexplored. Tutorial writing 
involves creating instructional content that is engaging, clear and 
factually accurate across both code and natural language. When 
trained with large-scale corpora of both natural language and source 
code, LLMs can generate content across a broad range of topics 
and predict text and code across multiple natural and programming 
languages. Such a capacity makes LLMs a suitable candidate for the 
tutorial writers’ toolkit. Moreover, interacting with LLMs is typi-
cally through textual prompts, a paradigm that is versatile while 
requiring minimal efort to learn. 

Despite LLMs’ potential to be a capable tool, the actual user 
experience with LLMs can sometimes be flled with uncertainty 
and dissatisfaction [35]. Notable issues are inconsistencies in model 
output [19, 68], lack of trustworthiness [21], questions about con-
tent ownership [7], and outdated information [28]. The extent to 
which these issues impact the utility of supporting the tutorial writ-
ing process remains uncertain. The non-deterministic nature and 
sensitivity to changes in prompts [39] also present a signifcant chal-
lenge for tool designers in creating appropriate interactions that 
can efectively use their capabilities [13, 69]. Moreover, a smooth 
integration of LLMs into existing processes and tools of the target 
tasks is far from intuitive [65]. To provide essential support for 
software tutorial writers with the LLMs, it is, therefore, essential to 
carefully examine the needs of tutorial writers, how the capacities 
of LLMs might meet their needs, and how to align such capacities 
with writers’ existing practices and workfows. 
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Figure 1: An overview of our key fndings, including relevant areas for adopting LLMs in tutorial writing context (derived from 
interviewing tutorial writers) and aspects during direct interaction (derived from observing writers using LLM for writing 
tasks). Our proposed Design Recommendations (DRs) for building LLM-based tutorial writing tools are indicated next to the 
relevant interaction aspects. 

In our work, we investigate how LLMs might be efective in 
meeting the needs of tutorial writers through a user study with 
seven technical writers with extensive experience in writing and 
publishing tutorials. Instead of solely focusing on how LLMs can 
solve tutorial writers’ challenges in their existing practice, we also 
examine novel use cases and interaction patterns of tutorial writers 
when provided with advanced technology like LLMs. In particu-
lar, we started with an interview with the writers to understand 
their activities and concerns related to tutorial writing and how 
those activities might beneft from the assistance of LLMs (Research 
Question 1). Subsequently, we gave them a brief introduction to 
LLMs’ capabilities and limitations and observed their expectations, 
strategies, and challenges when using an LLM for tutorial writ-
ing (Research Question 2). The LLM used in the user study was 
Codex [47], an LLM specifcally trained on both natural language 
and source code. The interaction was through a web application 
called playground, ofered by OpenAI to enable users to prompt 
Codex and other models.1. We fnally discuss our observations to in-
form potential opportunities and practicalities in designing AI tools 
for tutorial development. By combining user-centred design with 
technology-driven inquiries, we contextualize the tutorial writers’ 
values in the expanded innovation space of tutorial tools aforded 
by LLMs [69, 70]. 

The interview study results surface three areas that are most 
relevant to the capabilities of the LLMs in generating code and 
natural language for tutorial writers: (a) performing research on 
background concepts, (b) resource creation, and (c) meeting writing 
quality standards. By observing how writers interact with the LLM, 

we fnd four aspects concerning their interaction with LLM-based 
tools. First, writers approach the interaction process once they 
formulate a goal for the interaction based on certain expectations. 
These goals involve understanding the model’s technical limits or 
directing the model to produce desired tutorial content. Next, they 
articulate their intentions to the LLM in the form of prompts. Our 
participants employed strategies to elicit relevant content, such as 
providing the overall tutorial structure and refning the prompts 
with topic-specifc keywords. 

Once the LLM generates an output to the specifed prompt, writ-
ers observe and verify the output in the context of their prompt and 
the overall tutorial. Verifcation involves leveraging their domain 
expertise, consulting existing documentation or references online, 
and sometimes executing the code generated by the LLM. Finally, 
writers refect and revise their expectations and future interaction 
goals based on the usefulness of the output and how well the output 
meets their expectations. These aspects are performed continuously 
in subsequent interactions until the objective is achieved or the 
LLM usage is abandoned. We provide an overview of these stages 
and aspects in Figure 1. 

While resembling the cognitive processes of writing in previous 
literature [17], the LLM-interaction process we observed is more 
fne-grained and captures the unique dual objectives of the tutorial 
authors when using the LLM – understanding the capacity and 
limitations of the tool and achieving the writing goals. Informed by 
these fndings, we discuss design implications and make recommen-
dations for interface design of LLM-based tools for tutorial writing 
that can enhance the interaction of users along the highlighted 
dimensions. 

In summary, our work makes the following contributions: 1https://platform.openai.com/playground 
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(1) Identifying unique workfows, considerations, and concerns 
of software tutorial writing to inform the integration of LLM-
based tutorial writing tools. 

(2) Depicting the interaction strategies and corresponding chal-
lenges faced by the tutorial writers while using LLMs. 

(3) Proposing design recommendations for LLM-based tutorial 
writing tools that address the primary considerations from 
both the writers’ existing workfows and characteristics of 
their interaction with LLMs. 

2 RELATED WORK 
Our work is informed by existing research on tool support for 
authoring software tutorials and interactions for code and natural 
language generation using LLMs. 

2.1 Tool Support for Authoring Software 
Tutorials 

The research landscape for software tutorial creation addresses 
challenges such as selecting and maintaining consistency in the 
code examples [20, 24, 25, 66], simplifying the capture of screen-
shots and other resources to be included in the tutorial [38, 45, 72], 
and orchestrating capture of crowdsourced information like com-
munity annotations for their reader’s understanding [15, 22, 32]. 
The solutions proposed in these studies facilitate integration and 
maintenance of supporting resources in the tutorial to add context 
while expecting the writer to manually perform aspects such as de-
veloping code implementations, selecting and editing relevant code 
snippets to include in the tutorial, and crafting high-quality expla-
nations. An interview study by Head et al. [25] highlights the need 
for support in selecting programming tutorial topics, producing 
accurate and engaging content, and integrating code snippets with 
textual explanations. Our work expands this inquiry beyond pro-
gramming tutorials to include general software technology. We are 
particularly interested in the applicability and challenges of using 
LLMs in these workfows – how the software tutorial writer might 
leverage the LLM’s generative capabilities in both code [10, 65] 
and detailed explanation [36] using natural language statements 
or prompts [39] to accelerate the tutorial authoring and resource 
generation process with minimal human intervention. Our work 
examines user interaction with LLMs for writing tutorials focusing 
on unique benefts like generating coherent code from natural lan-
guage and summarizing or explaining code. This approach difers 
from prior studies, which concentrate on editing tutorials with 
either reference solutions or expect humans to perform the edits 
manually. 

2.2 Intelligent and Interactive Assistants for 
Generating Code and Text 

While LLMs excel in generating code and natural language, their 
usability in complex programming and writing tasks is often lim-
ited because of the mainstream design of human-LLM interac-
tion. Vaithilingam et al. [65] reported that existing LLM-based tools 
used for code generation like Copilot2 generate large blocks of code, 
making it difcult for humans to debug and refactor code efectively. 

2https://github.com/features/copilot 

Barke et al. [4] identifed two user interaction patterns while using 
Copilot: acceleration, where programmers use the tool for rapid 
completion of known tasks, and exploration, employed for explor-
ing alternate programming solutions. They used these fndings to 
advocate for better usability of programming assistants, such as 
providing users with greater control over the code generation and 
capabilities to validate the generated code. More recently, Ross et al. 
[54] explored a conversational assistant for general assistance dur-
ing programming tasks, including code generation, and observed 
that the conversational paradigm improves the co-creation aspect 
in code generation. These works highlight the importance of study-
ing human interaction strategies to inform the design of LLM-based 
tools. 

Human-LLM interactions for text generation have been studied 
across several dimensions, such as needs and values of users [7, 
18, 27, 31, 53], writing domains [9, 43, 58], and writing stages [17]. 
However, existing work on designing tools to support writing activ-
ities lacks a discussion on tutorial authoring [17, 33]. For example, 
by analyzing 33 systems from the literature, Gero et al. [17] map the 
design space based on the Cognitive Process Theory of Writing [16]. 
Their work identifes a lack of support in planning and reviewing 
stages of writing for highly constrained tasks due to the poor capa-
bilities of language technologies at the time. Our work builds upon 
their result to study the task of tutorial writing in-depth, where we 
identify the specifc writing processes where LLM can be promising. 
Tutorial writers have open-ended pedagogical goals [30] involving 
the dual modalities of code and natural language. At the same time, 
they are tightly constrained by the various aspects of the targeting 
software, such as the programming language, the underpinning 
technology, the software version, etc. We investigate strategies and 
challenges faced by the tutorial writers as they interact with Codex, 
an LLM capable of generating both code and natural language, 
aiming to make design recommendations for this open-ended and 
constrained task. Furthermore, our fndings are pertinent to the 
needs during LLM interactions rather than the general thought 
process outlined in the Cognitive Process Theory of Writing. 

3 STUDY DESIGN 
To investigate how tutorial writers interact with an LLM, we con-
ducted an exploratory study with seven highly experienced tutorial 
writers from diverse backgrounds. Specifcally, the goal of the study 
was to draw out 1) the current workfows and challenges of writers 
in their tutorial creation process to inform areas where the use of 
LLMs can be benefcial, 2) the writers’ perceptions and expectations 
when using LLMs, as well as the strategies writers employ to utilize 
LLMs efectively for their specifc needs and expectations. In this 
section, we discuss the study design to meet our goal. Our study is 
approved by the research ethics board of the authors’ university. 

3.1 Participants and Recruitment 
We aimed to engage diverse individuals with extensive experience 
in writing and publishing technical tutorials, ensuring they could 
provide insights into the challenges, strategies, and opportunities in 
this area. During the recruitment stage, each potential participant 
was asked to share at least one of their published technical tutorials; 

1762

https://2https://github.com/features/copilot


DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo 

one author manually validated the tutorials to ensure their exper-
tise. Validation involved checking for sufcient length and depth in 
the subject matter and the inclusion of instructional resources such 
as code snippets or screenshots. We had 33 sign-ups for the study 
from technical writing communities on Slack, Reddit, and LinkedIn, 
of which 19 were excluded for not sharing links to a published 
tutorial. Of the 14 who shared the links, four were excluded based 
on the quality of the tutorial, and three did not proceed with the 
interview scheduling process. Finally, we recruited seven partici-
pants (henceforth referred to as �1-�7). Table 1 provides relevant 
demographic and professional information of all the participants 
in our study. As a token of appreciation for participating in the 
study, each participant was compensated with an Amazon gift card 
valued at $20 CAD or an equivalent amount in their local currency. 

Recruiting participants with specialized expertise is difcult to 
carry out efectively at a large scale. The rigorous recruitment strat-
egy we followed ensures the expertise of the selected participants. 
Upon inspection, our participants demonstrate sufcient diversity, 
representing several facets of the software engineering discipline. 
They provide insights into the documentation practice for open-
source communities, startups, and established companies. Their 
instructional materials are disseminated across multiple platforms, 
including company websites, community blogging platforms (e.g., 
Medium), and GitHub. The participant group comprised junior and 
senior experts in software development and technical writing in 
terms of years of experience and writing frequency. Given the scope 
of this work, we deem our study sample is appropriate [23, 46, 61]; 
input from our participants can provide a rich account of the possi-
bilities and limitations of using LLMs to aid tutorial writers with 
the generation of software tutorial content and resources in various 
context. 

3.2 User Study Procedure 
The study consisted of a semi-structured interview about existing 
tutorial writing practices and an observation component where we 
examined how participants used LLMs for tutorial creation. The 
complete study for each participant lasted around one hour and 
was screen-recorded. 
Semi-structured interview. The initial part of the study involved 
interviewing participants [56] to understand their current practices 
and workfows in tutorial writing. We focused on their experiences, 
tools used, and techniques for writing, organizing, and maintaining 
tutorials. We asked the participants to contextualize this discussion 
using (but not limited to) the tutorials they submitted during the 
recruitment to understand their practices with concrete examples. 
Participant Observation. We performed direct observation [41, 
51, 56] to get an accurate understanding of the nuanced interactions 
with the LLMs, especially in the context of writing software tutori-
als. Since the LLMs were not prevalent in tutorial writing practice 
during the study period (August and September 2022), any retro-
spective account would be insufcient to understand the individual 
contexts in which the users interacted with the LLM. Instead, we 
asked the participants to mimic the scenario of writing a tutorial on 
a topic they were familiar with while being assisted by Codex, one 
of the most capable models trained on both code and natural lan-
guage at the time of the study. Participants interacted with Codex 

through the OpenAI playground [48], a web application for easy ac-
cess to the OpenAI LLMs. The playground presents a large text area 
along with a panel where the users can choose the LLM settings, 
notably, mode of interaction (one of Complete, Edit, or Instruct), 
model from diferent model families such as Codex3, maximum 
length token (default value of 256), which indicates the number of 
tokens generated by the LLM per request, and temperature (default 
value 1). Since most of the participants had not used the tool prior 
to this study, we provided a brief introduction and introduced the 
playground settings. Participants were free to modify the settings 
at any point during the exploration. We asked participants to follow 
the ‘think aloud’ protocol [29, 60] during the exploration, encour-
aging them to voice their thoughts, actions, and expectations as 
they interacted with the tool. The interviewer occasionally asked 
participants about their actions and impressions of the interaction 
with the tool. While the study protocol might result in participants 
behaving diferently due to being observed, we wanted to gain rich 
insights into the participants’ thinking process and perspectives 
as they used the tool, which is difcult to obtain from other study 
formats [52]. 

During the observation phase, we chose to leverage a general-
purpose model like Codex over fne-tuned tutorial writing models 
for two reasons. Firstly, given the open-ended nature of tutorial 
writing, it was uncertain which specifc features of the LLMs the 
writers might engage with. Opting for a fne-tuned model targeted 
at a particular task could potentially limit our understanding of 
the broader applications of LLMs in the context of assisting tu-
torial writers. Additionally, fne-tuning a model without precise 
direction could lead to premature optimization for specifc tasks, 
which could possibly skew the user’s perceptions towards believing 
that LLMs are only suitable for those particular aspects. Using a 
general-purpose model like Codex enabled us to study the diverse 
aspects of tutorial writing, which could be later used to fne-tune the 
LLMs for specifc objectives targeted at the most desired use cases. 
Secondly, our objective was to investigate the usability aspects 
of human-LLM interaction in tutorial writing and derive design 
considerations. Considering this objective, we design our study 
methods to post minimal constraints on the model itself and to be 
applicable amidst the advancements in language technologies. 
Refection. We concluded the study by asking the participants 
to refect on their interactions with the LLM for writing tutorials, 
including its perceived usefulness, advantages or challenges, or 
any other relevant aspects. We also asked the participants about 
potential features they expected to have for an LLM-based tutorial 
writing tool. 

3.3 Data Analysis 
We performed a qualitative analysis of the audio transcripts of the 
interview study extracted using Microsoft Teams. We analyzed the 
participants’ refections about their existing writing practises in-
volving text production or code snippet generation, where LLMs 
could be leveraged to add value to the writing workfows. In addi-
tion, we used screen recordings to observe participants’ interactions 
with the LLM in the playground. Here, we leveraged a hybrid the-
matic analysis approach to make refective observations [63]. First, 

3Codex is discontinued in March 2023 [49]. 
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Table 1: Background of the Study Participants. English profciency is based on Interagency Language Roundtable Scale [55]. 

Participant 
Years in 
Software 

Engineering 

Tutorial Authoring 
Frequency (Past 3 Yrs) 

Tutorials 
Written 

Experience with AI 
tools Current Occupation English Profciency 

�1 <5 years Weekly/biweekly 5 Not used previously 
Lead, technical 
documentation 

Professional Working 

�2 <5 years Once a month 2 VS Code IntelliSense 
University Student 

(Computer Engineering) Native/Bilingual 

�3 11-15 years Once a month 20 Not used previously Technical Writer Professional Working 

�4 11-15 years 2-3 times a week 50 
GPT-3 based tools 

(Jasper AI) 
CEO (Technical writing 

agency) Native/Bilingual 

�5 1-2 years Once in several months 20 VS Code IntelliSense 
Student, Technical 

Writer Native/Bilingual 

�6 >15 years Once a month 50 Not used previously Technical Writer Native/Bilingual 

�7 11-15 years Once a month 50 VS Code IntelliSense 
Software Engineer, Site 
Reliability Engineer Full Professional 

the frst author reviewed the audio transcripts and screen record-
ings to annotate the salient themes and generate the initial codes. 
Next, the remaining two authors further critiqued and joined the 
discussion to ensure robustness. As insights emerged from the in-
terviews, we referred to the literature on writing processes and 
employed an abductive and retroductive inference [42] strategy. 
We present our results in the subsequent section and draw paral-
lels to the existing theories on interaction design and discussions 
regarding tutorial writing. 

4 FINDINGS FROM SEMI-STRUCTURED 
INTERVIEW 

From the interview with the tutorial writers, we distill the crucial 
workfows, considerations and challenges they face to answer: RQ1: 
What aspects of the tutorial writing are relevant and might 
beneft assistance from LLMs? Specifcally, we describe how 
the writers undertake thorough background research prior to the 
writing, their development of content along with resources such as 
code snippets and notes, and the refnement of developed content 
while adhering to self-imposed quality standards. We also discuss 
participants’ refections on how LLMs can support them in these 
workfows after they interact with the models (code-davinci-002 and 
davinci [49]) available in the playground interface for the writing 
tasks in our study. 

4.1 Assisting with Research of Background 
Concepts 

4.1.1 Existing Practice. Before writing a tutorial, writers perform 
a thorough research of the existing background information about 
the topic. Their research typically involves investigating existing 
resources through various channels, including existing documenta-
tion and online platforms like YouTube, internet forums, and Reddit. 
Through research, they identify gaps in the publicly available con-
tent and gauge potential information that the learners might seek 
regarding the subject. Such a process facilitates their own learn-
ing and mastery, especially when dealing with new technology 

or unique applications of familiar technology. In instances where 
existing resources do not cover certain information, they lever-
age their access to developers, if available, for further insights and 
clarifcations. 

Participants highlighted two challenges related to the interaction 
with developers. First, developers often presume that the writers 
possess a foundational understanding of background concepts dur-
ing technical discussions (e.g., “[Developers] expect us to understand 
certain things in the development area. They don’t know that we are 
totally new to this” [�3]). This expectation leaves writers, espe-
cially those new to the technology, with a difcult task to quickly 
grasp complex background concepts. The second challenge is when 
writers are blocked due to developers being unavailable for such 
discussions (e.g., “Getting a developer’s time is sometimes difcult, es-
pecially during the sprint or a deadline” [�6]). Participants acknowl-
edged that the recent shifts towards remote work had facilitated 
convenient and productive collaborations, with tools like Slack and 
Zoom ensuring quicker responses by the developers. 

4.1.2 Opportunities. The conventional approach to gathering in-
formation for tutorial writing is cumbersome since it involves sift-
ing through scattered documentation or consulting with busy de-
velopers. Participants acknowledged the potential of using LLMs to 
streamline this process. For instance, �4 identifes LLMs as a poten-
tial stand-in, stating “It would be like a replacement for a developer 
to ask technical questions. So, if I can’t fnd a developer then I could 
ask the model, what does this piece of code, module, or web page do? 
What is it for?”. Echoing this sentiment, �3 observed, “Even when 
not probing developers, we have to get defnitions and details from 
the Internet, for which this is extremely helpful.” While collaborating 
with developers can be insightful for acquiring information not 
readily available in the documentation, there is an opportunity to 
leverage LLMs more efectively in this context. For example, �6 
suggests enhancing LLMs by training them on the design documen-
tation, “The design documentation, which is usually internal, often 
explains the rationales for projects. If you could somehow train them, 
that’d be valuable to explain the rationales and the intentions”. 
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4.2 Creating Instructional Code and Text 
Content 

4.2.1 Existing Practice. Writers create a range of content during 
the tutorial writing process. Content like illustrative code examples 
and outputs or screenshots (e.g., a tutorial for using software with 
a graphical interface) enhance the tutorial’s instructional value and, 
therefore, are developed to integrate into the tutorials. However, 
they lack sufcient tooling support to tutorial writing specifc tasks. 
While developing programming tutorials, writers frst implement 
and execute the complete code. Having a working implementation 
adds credibility to the tutorials and facilitates the capture of relevant 
code snippets and outputs, which ofers context and clarity for the 
readers (e.g., “You have to rely on [code examples] to make sure [the 
readers] follow the intentions of the API, and not abuse the API. Then 
I’ll throw in the explanatory content around the logical chunks and 
explain each chunk and the rationale” [�6]). Participants reported 
using IDEs, text editors, and, in one case, even traditional pen and 
paper to develop the implementations. 

When it comes to working with code, they needed to “involve the 
support and collaborate with developers as well” [�3] which required 
adapting tools like GitHub (e.g., “Developers are more familiar with 
the GitHub so it’s easier for both of us. But for some technical writ-
ers, there will be a learning curve to get used to this” [�3]). This 
collaboration tends to beneft the developers as it allows them to 
identify and rectify previously unidentifed issues in the existing 
documentation (e.g., “Sometimes the client has never actually done 
what they’re asking before, and it might not actually work the way 
they think it should. That’s what they’re looking for partly, somebody 
to help catch those kinds of issues and errors in their documentation. 
But that can be very frustrating as a writer” [�4]). 

Writers execute and verify the code implementation in the tu-
torial at multiple stages, starting from the initial development and 
again while adding textual explanations. This ensures the fnal tu-
torials are free from errors which arise when adding additional 
content and narratives (e.g., “I usually make edits to make the con-
tent more human readable. It’s easy to introduce syntax errors while 
doing that, so I copy it back to the command line to make sure that 
I didn’t break anything” [�7]). Participants reported inadequate 
support towards supplementary tasks like managing references 
to successful and unsuccessful code implementations or capturing 
complex screenshots requiring extensive setup (e.g.,“Software devel-
opers have amazing tools because they are software developers. They 
can make their own tools. Technical writers have unmet needs because 
we’re not software developers for the most part, and we can’t make 
tools, so we have to rely on developers to make tools for us” [�6]). 

Resources like notes or writing templates are often intended as 
personal reference material to assist the writing process, though 
they may not be included in the fnal tutorial. Participants stated 
that these resources are useful when they encounter challenges like 
writer’s block, which poses challenges in coherently articulating 
ideas (e.g.,“Writer’s block was more frustrating than other [challenges] 
because I have written something which doesn’t make sense, but I don’t 
know what to do” [�5]). Writers construct notes by documenting 
their everyday work and recording their solutions to problems they 
reckon the readers might encounter. Writing templates consist of 
instructions, checklists, or good practices which are either sourced 

from public repositories like The Good Docs Project4 or are based on 
the writers’ own prior experiences in tutorial creation. Participants 
also reported turning to AI-powered tools such as QuillBot5, which 
assist with paraphrasing or restructuring the content to get past 
writer’s block. 

4.2.2 Opportunities. The capability of LLMs to generate both text 
and code can allow writers to avoid constantly switching between 
various IDEs, text editors, and reference materials. �6 illustrated the 
possibility of transforming the traditional tutorial creation work-
fow, “It fips the workfow around because instead of frst making sure 
the [tutorial steps] work and then retracing your steps and putting 
them in [tutorial], here can start with the goal and put something out 
and then you start to test it out.” � 7 emphasized the efciency of 
this approach, mentioning that what took mere seconds with the 
LLMs, traditionally “would have taken easily 30 minutes to put out.” 
Such a shift in the creation process allows writers to focus more on 
refning the content and ensuring it connects well with the target 
audience. 

4.3 Meeting Tutorial Quality Standards and the 
Needs of Readers 

4.3.1 Existing Practice. Writers adhere to self-imposed quality stan-
dards such as clarity, readability, completeness, and being up-to-
date, prioritizing the information needs of their audience while 
aiming to maintain the tutorial’s accuracy and relevance. This fo-
cus signifcantly infuences their decisions regarding the tutorial’s 
scope, writing style, and the choice of resources to include in the 
tutorial. 

Given the rapid pace of technological updates, keeping the tu-
torial up-to-date is a critical challenge in ensuring tutorial quality. 
Writers either keep track of code changes themselves or rely on de-
velopers for updates (e.g., “Most of the time, [developers] inform us if 
there are any changes in the code or there is a new release. Sometimes 
they forget, and when users point out that the tutorial seems obsolete, 
we update” [�3]). In cases of minor updates, developers modify 
the tutorials despite being less experienced in writing, which in 
turn necessitates further editing (e.g., “We look for technically strong 
developers to write tutorials. Then, we fnd editors who can read their 
tutorials, clean them up, and improve the writing without breaking 
the technical accuracy” [�4]). When signifcant changes need to be 
made quickly in fast-evolving felds like machine learning, writers 
prefer to create new tutorials rather than revisit existing ones (e.g., 
“In 8-9 months, there are new versions of tools with new features. You 
can’t go back to your tutorial and change everything. The only way 
is not to update the tutorial but to write new ones” [�5]). A proactive 
strategy discussed by the participants is to design tutorials with a 
focused scope, covering select features to reduce the extent of nec-
essary updates (e.g., “A tutorial usually touches lightly on a handful 
of features, and unless those features change drastically, there’s not 
much maintenance” [�6]). 

Writers greatly value clarity and readability (e.g., “I edit con-
tent to make it more human-readable, pretty, and easily digestible. 
Like breaking up commands into multiple lines” [�7]). They aim to 

4https://thegooddocsproject.dev/ 
5https://quillbot.com/ 
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provide the necessary context within the tutorial to minimize the 
need for any external references (e.g., “I don’t like sending people to 
[external] links. I rather synthesize the content, reword it and make 
it more clear” [�7]). However, achieving the balance in providing 
the right amount of details can be challenging since writers need 
to anticipate and tailor the content based on the reader’s technical 
level (e.g., “With a very junior-level reader, I might want to include 
every step but with a senior person, I might jump right to the things 
that are relevant to them” [�4]). This balance is crucial in designing 
tutorials that are not only informative but also instill confdence in 
users to navigate and explore the system. One strategy is to develop 
short and focused multi-stage tutorials that gradually increase in 
complexity and scope. Despite existing tools like Confuence that 
are used to organize and structure the tutorials, articulating concise 
tutorials remains challenging (e.g., “Trying to condense and be to the 
point but also remain very clear and read well is the challenge” [�7]). 

4.3.2 Opportunities. Participants acknowledged LLMs’ efciency 
in tasks like translation, which is essential for tutorial content dis-
semination. Translation extends content accessibility and broadens 
its reach. Multilingual support is often a requirement posed by the 
companies, “In EU, if you have documentation on your site, you have 
to have it in the native country’s language as well. The German and 
French companies like what we write [in English], but also want to 
have it in French and German, their native languages, and that’s a 
big deal for them” [�5]. However, the challenge lies in ensuring 
that the translated content maintains its technical accuracy and 
contextual relevance. Versions in diferent languages need to main-
tain the same level of accuracy and clarity as the original, often 
necessitating human oversight (e.g., “I don’t see how any model, even 
if it works, will just write the things. How will it know to maintain 
itself?” [�1]). 

5 FINDINGS FROM PARTICIPANT 
OBSERVATION 

To further understand the design considerations for using LLMs 
in tutorial writing, we must investigate how the writers might 
approach LLM interaction for concrete writing tasks. In this section, 
we draw from observations of how participants utilized the LLM 
in tutorial creation to answer: RQ2: What are the expectations, 
strategies, and challenges when writers use LLMs for tutorial 
creation? In particular, we discuss how writers formulate initial 
expectations and goals of interaction, articulate their goal through 
prompts to LLMs and other parameters, observe and verify the 
generated content, and eventually refect and revise their goals and 
interaction strategies based on the output. 

The prospect of using LLMs for writing a complete tutorial was 
new to all our participants, given the lack of established and mature 
LLM-based tutorial writing tools in the market; four participants 
(�2, �4, �5, �7) had prior experience with using intelligent coding 
tools (see Table 1). Therefore, each participant was briefy intro-
duced to the capabilities of individual models (code-davinci-002 and 
davinci [49]) before the observation study and the features of the 
OpenAI playground that might be relevant to their writing process. 
We encouraged the participants to use LLMs for broader tutorial 
writing workfows that they discussed in the interview, as described 
in the previous section. Examining their interactions within the 

context of outlined tasks situates their perceptions, strategies, and 
challenges in adapting LLMs to the unique requirements of tutorial 
creation. When introducing the quotes from the participants, we 
indicate the actual textual prompts our participants typed on the 
playground interface by enclosing them in brackets and highlighted 
with a [diferent font] for clarity. 

5.1 Formulating Expectations and Goals of 
Interaction 

Participants possess a mental model of the LLM, i.e., an internal 
representation of the LLM’s functionalities, capabilities, and an-
ticipated behaviour. Users form expectations and defne the 
goals and intentions according to their mental model as they 
approach the LLM in each interaction cycle. The objectives of the 
interaction might be to update the mental model (e.g., to probe and 
understand the capability of LLMs better or to explore the possible 
ways to elicit the best responses from it) or to use LLM towards the 
overall writing goal (e.g., to complete a section in the tutorial or 
to edit a specifc step in the tutorial). While working with an LLM, 
the interaction goals frequently switch between the two as the user 
attempts to decipher the LLM’s capabilities and employ them for 
tutorial writing. 

Some participants intended to start by replicating the strategies 
shown in the initial introduction of the study (e.g., “Just repeating 
whatever worked successfully before, as you showed me” [�6]). As 
familiarity with LLMs grew, participants began experimenting and 
calibrating the workfows (e.g., “Let me use a diferent input [Ex-
ploring diferent Embeddings]. I want to see what comes up” [�5]). Such 
experimentation was often related to understanding the capacity of 
LLM (e.g., “Can we describe something more sophisticated than just 
a single function? Say I gave it the source code to an entire program 
and see if it understands how a human would use it?” [�6]). 

Since tutorials are often written for a particular version of a spe-
cifc technology, participants expressed the need to understand 
the model’s technical boundaries and the sources of the in-
formation (e.g., “Is the model working from the information they 
got from the help content, like the documentation or source code?” 
[�6]). However, such information is not readily available or easily 
assessed, leading to questions like “How quickly do they update the 
model? At one point they indexed a lot of stuf from Google results. 
Are they doing that continuously?” [�4]. To obtain this knowledge, 
participants intend to leverage circuitous strategies (e.g., �4 de-
scribed a strategy they employed “Trying to fgure out the limit, I 
started playing around [tell me about the latest updates to Redis], and see 
which version it tells me about because that gives you the decay of 
how updated it is” ). Prior experiences and perceptions about the ca-
pabilities of LLMs infuenced the participants in their probing (e.g., 
“I’ve seen one example on the Internet about a security issue when you 
would ask [the LLM] about API keys, and it will give you someone’s 
API keys. What happens if you tell the Playground to generate AWS 
keys? [generate AWS keys]” [�1]). 

Participants refected being skeptical and hesitant since they did 
not understand the inner workings of the model (e.g., “We don’t 
understand what this model does. I don’t know what I’m entering, and 
I don’t know what’s happening with it. I don’t wanna use it” [�1]). 
While there is interest in understanding the LLMs’ training 
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processes, data update cycles, strengths and weaknesses, it 
is primarily to gauge the tool’s relevance and utility for tutorial 
writing. �6’s query, “The model knows about [software] due to its 
training on documentation. But what about when documentation is 
absent?”, pinpoints the desire for clarity on how LLMs acquire and 
utilize information. 

5.2 Articulating Goals and Intentions into 
Prompts 

Users communicate their intentions to the LLM through carefully 
constructed prompts and sometimes even specifc LLM parame-
ters. However, accurately articulating their intentions can be 
challenging, leading to ambiguous or misdirected prompts. 
The user’s perceptions of the capability of the LLM can skew their 
prompts toward either oversimplifcation or excessive ambition. 
Consequently, users found themselves dedicating signifcant ef-
fort towards refning their prompts to efectively “phrase it for 
the machine” [�4]. This task is further complicated by a lack of 
transparency in how changes in prompts have impacted the LLM’s 
outputs. 

As the participants worked to align the LLM’s output with their 
writing objectives, they devised multiple strategies to steer the 
LLM (e.g., “Everything that I’ve considered valid here, I’ll retain, and 
then I’ll guide [the model] in a slightly diferent direction” [�7]). 
Their prompting techniques mirrored traditional manual tu-
torial drafting approaches, such as providing an overarching 
structure of the target tutorial. �5, for example, structured their 
tutorial by starting with section titles, noting, “I want to start with 
an introduction. I would probably input the title [Searching for Semantic 

Similarity - Introduction] and see the [LLM’s] response”. Participants also 
frequently edited and reformulated their prompts, such as 
adding/removing topic-specifc keywords (e.g., “To avoid bias, I 
removed NLTK [from the context window], prompting it to explore 
GloVe. When I excluded GloVe and added the word choosing, it began 
suggesting alternatives. It eventually provided three sensible options” 
[�5]). Crafting and tinkering with prompts to achieve the intended 
output required considerable time and efort from the participants. 
Experienced participants questioned the actual value derived from 
using the LLM (e.g. “It takes this art form to get it to actually produce 
relevant output. I have to think about what am I actually getting it to 
do. When I am a developer who’s done this for many years, it would 
be faster for me to do it myself” [�4]). 

The usability of an LLM’s interface signifcantly infuences how 
users understand its capabilities. While we acknowledge that the 
playground’s primary aim is model exploration and not tutorial 
writing, we observed that the usability issues led to misconcep-
tions and eventually resulted in underutilization or abandon-
ment of the LLM. Two primary issues of the interface were the 
inability to diferentiate between prompts and generated text and 
unclear indicators of how prompts and model parameters afect 
text generation. The playground provides a single text box for both 
input and output in the Complete mode, confusing the participants 
about what constitutes input for the LLM (e.g., “There’s nothing 
related to deployment [in the generated content] because it’s biased 
by the multitude of input before deployment” [�5]). This confusion 
led to strategies like pruning the existing content in the text box to 

manage context. Nevertheless, participants expressed skepticism 
about adopting the interface to the actual tutorial writing (e.g., “If 
you want to write a blog in continuation, how can you not have the 
whole next thing? Is it expected to completely remove content every 
time to let this tool do the job?” [�5]). Furthermore, the lack of clear 
indicators to illustrate the efect of prompts or model parameters 
necessitated the participants to often speculate on the required 
prompts and parameters to obtain desired output (e.g., “I’m sure it’s 
not gonna be able to create all that in just 256 characters. I guess I can 
up [maximum token length] and see what happens” [�4]). Several 
participants observed the generation stopping mid-sentence due to 
a tool-imposed limitation on the token length “OK, so I ran out of 
tokens there” [�6] and resorted to workarounds to continue genera-
tion “I guess if I hit ‘submit’ again, is it gonna keep going or what? 
What would it do?” [�4]. However, such strategies were not appar-
ent and resulted in judgments like “fall short, but at least complete 
a sentence” [�5]. While the playground ofers modes like Complete, 
Edit, and Instruct, their utility was not obvious or cumbersome as 
the participants had to copy and paste the target content between 
the modes manually. Participants attributed the low usability of 
features as one of the biggest factors for abandoning such tools for 
tutorial writing (“I think there are too many issues for it to be worth 
working on it. I have no idea how to make it usable” [�1]). 

Regardless, there is a constant disconnect between user intent 
and how to prompt the output, as illustrated by �5’s comment, “for 
this [model], you’ll have to fnd what exactly to tell them. It’s like 
communicating in a diferent language.” Participants also indicated 
a need for fne-grained control over content generation and editing. 
As �5 put it, “it should let me provide some basic keywords that I 
want to include and not just go on its own spree of doing whatever it 
wants.” 

5.3 Observing and Verifying the LLM Generated 
Output 

Users observe the accuracy and relevance of the generated 
output concerning their initial prompts and the current con-
text of their writing. The accuracy is verifed through domain 
expertise, cross-referencing with reputable external sources, or 
testing the real-world applicability by executing it. Beyond factual 
accuracy, the output must also align with the user’s intentions, 
which is ensured by evaluating the generated content against the 
user’s original prompt. Other important aspects include verifying 
the tone and style of the content and the consistency with the 
content created from the previous interaction iterations. 

Participants drew upon their domain expertise or general knowl-
edge to verify the generated content in certain instances. Partici-
pants with prior experience in the concerned technology were able 
to leverage their knowledge to identify discrepancies in the output 
(e.g., �7 leverages their experience as a developer to identify incor-
rect content about AWS access keys, “I think there are some missing 
steps here. Here’s the thing, because we just created the account these 
access keys will not exist at this point” ). Common world knowledge 
is also used for tasks like translation (e.g., “‘getting started’ doesn’t 
translate to ‘à propos de départ.’ It doesn’t mean anything” [�1]). 
When domain knowledge was insufcient, participants chose 
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strategies such as cross-referencing with existing documen-
tation, internet search, or testing by execution. Minor details 
of generated content (e.g., URLs) were checked for authenticity and 
correctness by a browser search or against existing documentation. 
Aspects that involved complex reasoning (e.g., code snippets or 
steps for creating an AWS account as explored by �7, “let’s actually 
go ahead and test all of this” ) were tested through manual execution. 

Participants observed the textual quality of the generated con-
tent. As detailed in section 4.3, participants desire specifcity and 
coherency in the generated content (e.g., “I was hoping that [the 
generated content] would be a bit more specifc when it says ‘run the 
installer.’ I mean, it’s pretty obvious for the end user, but I like to make 
it impossible to do the wrong thing” [�7]). Often, they resorted to 
manually editing the generated content (e.g., �7 mentions “I would 
remove extra information [from the generated content]. That’s my 
style” and proceeded to edit manually) and frequently switched 
between using the text box to prompt the LLM and manually make 
changes to reach the fnal outcome. 

Participants felt that human oversight and verifcation remain 
indispensable for capturing technical nuances and maintaining 
accuracy. The trust in generated content is contingent on having 
the control to verify further and edit, as illustrated by �7, “I would 
not say that I have enough trust that I can publish it and call it a 
day. I would probably still want to test it, at least go through the 
steps.” However, verifcation has its own challenges, considering 
the security implications of LLM-generated content, as illustrated 
by �7’s comment “Considering that an algorithm generated this code, 
maybe we need some kind of sandbox so that it doesn’t do any damage 
to my system” who later called for such a feature to be implemented 
in the interface. Considering the instructional aspect of tutorials, 
participants were particularly cautious as any misinformation could 
signifcantly derail the learning experience (e.g., “When I was asking 
where the source code for [software] was, it didn’t know, and it gave 
an incorrect answer. It’d be cool if it could just touch its shoulders and 
say, I don’t know, or give some kind of score about how confdent it is 
about its answer” [�6]). 

5.4 Refecting on Expectations and Revising 
Future Interaction Goals 

Users refect on their latest interaction to revise their mental 
models and calibrate interaction strategies with the LLM or 
update their writing objectives for the tutorial. Refection as-
sists the users in comprehending the underlying reasons for any 
discrepancies between the expected and the actual output and up-
dates the mental model to manage the expectations. Users accept 
the LLM’s output when the discrepancies are minimal. In addition, 
they positively update their perception of the LLM’s capabilities 
and form an enhanced mental model of the interaction strategies. 
Conversely, when users frequently encounter signifcant discrepan-
cies and continuously need to calibrate their strategies, it signals a 
disconnect between their expectations from the LLM, the prompts, 
or their refection process. 

We observe that the refection process is grounded in the user’s 
hypothesis of the functioning of the LLM and how it handles the 
prompts. For example, �4 described the working of LLM as “It isn’t 
really contextually aware. It’s just pulling text and trying to fgure 

out what text makes sense around that text” ). However, participants 
found it difcult to form these hypotheses due to the absence 
of traceability between prompts and their outputs (e.g., “I’ve 
modifed two things in this latest query, so the output is a little diferent 
than before. I’m not sure what made it diferent” [�6]). Even when 
formed, these hypotheses are not necessarily accurate (e.g., “It needs 
‘machine learning’ [as a keyword] in the prompt. It doesn’t work 
for any other thing” [�5]). Participants adjusted and refned their 
initial hypotheses when the generated content did not align with 
their expectations. For example, when the model did not generate 
any content about the software they mentioned in the prompt, �4 
mentioned “I think for [software], it’s even more niche. It’s not a well-
known tool. So the problem is it’s probably not much content to pull 
from. It probably just ignored [software] as a tool”. Users verifed the 
hypothesis with a subsequent interaction cycle or by referencing 
external material. For example, �6 refers to the software’s hosted 
documentation with “I’m curious to see how it’s actually listed [on the 
website]. Is the [generated] text verbatim?”. Eventually, we observed 
instances where the participants decided to let the LLM take control 
when they were confdent in its capabilities (e.g., “There’s some kind 
of diferences in confguration for diferent host OS that I know of, but 
I’ll let it fgure that out for me” [�7]). 

Refecting on the LLM-generated content resulted in revisions to 
the writing objectives. The revisions could be towards expanding 
the scope (e.g., “Nice, it even added a ‘Clean up’ section. This would 
be good to elaborate on” [�7]) or towards enhancing the quality 
(e.g., “I will actually verify and edit if I fnd that there’s things that 
are either not working or maybe extra information. Like I mentioned, 
I try to be to the point” [�7]). Participants considered the generated 
content as the frst draft, which they could enhance using their 
experience (e.g., “I could use this to help me bootstrap and get started 
and get a basic version going. Then I can fll in the gaps” [�4]). 

6 DISCUSSION 
In sections 4 and 5, we described where LLMs are considered most 
relevant in the tutorial writing process and highlighted the chal-
lenges writers encounter while interacting with these novel lan-
guage technologies. Building on these fndings, we discuss three 
major design implications and provide recommendations for devel-
oping LLM-based tutorial writing systems. We summarize these in 
Table 2. We also examine the potential limitations of our study and 
propose future research directions in LLM-assisted tutorial writing. 

6.1 Implications for Designing LLM-Based 
Software Tutorial Writing Tools 

In this section, we discuss the design implications derived from our 
fndings outlined in Sections 4 and 5. We propose recommendations 
to enhance the functionality and user experience of LLM-based 
tutorial writing tools while focusing on the opportunities in the 
existing tutorial writing practises. The recommendations highlight 
three key areas: assisting writers in improving their mental models 
of LLMs, enhancing the control over content generation and editing, 
and verifying the accuracy and relevance of generated content. 

6.1.1 Design Implication #1: Assisting Tutorial Writers in Forming 
Accurate Mental Models of LLMs. As outlined in Section 5.1, the writ-
ers’ expectations and approach towards using LLMs for generating 
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Table 2: Design Implications and corresponding Design Recommendations distilled from the fndings. 

Design Implications Evidence Design Recommendations (DRs) 

Section 6.1.1: Writers should be able to de-
velop sufciently accurate mental models to 
set realistic expectations from the LLM and 
to carry out appropriate evaluation of out-
comes relevant to the tutorial. 

Sections: 5.1, 5.4 DR 1.1: Incorporate traceability to map code and natural lan-
guage changes between prompt-output pairs within and across 
interaction cycles. 
DR 1.2: Capture the provenance of the manually written and 
LLM-generated content to better reason the impact of using 
LLMs on their writing outcomes. 

Section 6.1.2: Writers should possess clear 
prompting mechanisms and be able to con-
trol tutorial-specifc content generation and 
editing precisely. 

Sections: 4.1, 4.2, 
4.3, 5.2 

DR 2.1: Separate and clearly distinguish the interface between 
prompting LLM and manually inputting text. 
DR 2.2: Provide a fexible interface that allows seamless switch-
ing between diegetic and non-diegetic prompting and editing 
that happen at diferent stages of tutorial writing. 
DR 2.3: Allow writers to incorporate and fexibly select rele-
vant sections of the current tutorial draft and prior background 
research to perform targeted edits of source code or explana-
tions. 

Section 6.1.3: Writers should be equipped 
with diverse verifcation features to ensure 
the reliability and relevance of tutorial con-
tent generated by LLMs. 

Sections: 4.1, 4.2, 
4.3, 5.3 

DR 3.1: Provide tailored verifcation mechanisms based on the 
source (e.g., incorporating research notes or reference code) 
and type (e.g., code interpreters for code snippets and link 
checkers for URLs) of the content type used in the tutorial. 
DR 3.2: Provide features such as static analysis tools and con-
tinuous integration systems to ensure consistency in syntax 
and conventions within individual code snippets and across 
the combination of all snippets throughout the tutorial. 

tutorials are shaped by factors such as their background research 
on the tutorial topic, personal impressions of LLMs formed from 
previous experiences, their curiosity to explore LLMs’ capabilities, 
and their progress in the current LLM interaction cycles. In Section 
5.4, we further described how the writers refect their interaction 
objectives, specifed prompts, and the corresponding outputs. The 
refection process contributes to changes in their mental model of 
the LLM and leads to adjustments in their strategies to use the LLM 
for their writing tasks. However, the mental model is often nascent, 
lacking a comprehensive understanding of the underlying technol-
ogy, such as training and fne-tuning of the LLMs, the meaning and 
impact of parameters like temperature, as well as efective prompt-
ing strategies [8, 67]. Prior research has observed an existence of 
gulf of envisioning resulting from insufcient knowledge of LLM’s 
capabilities [62]. In our study, the participants expressed the need 
to understand the model’s technical boundaries and the training 
data cutof date to ensure the predictions are accurate and corre-
spond to the latest software versions (Section 4.3). Ensuring better 
transparency of the underlying models using model cards [44] or 
explainable AI techniques [57] can be useful to address this issue. 

However, expecting end users, tutorial writers in our case, to 
acquire the relevant LLM-related knowledge may not be practical, 
as they might not possess the required technical expertise or simply 

may lack the interest to do so (e.g., “I still need to double-check ev-
erything and fgure out how to make it actually generate things you 
want. Now I have to learn machine learning properly and keep up to 
date with all these things. And it’s just, well, maybe I’m not going 
to do that” [�1]). The writers need an efective (not necessarily 
comprehensive) mental model that can help reason the impact of 
their actions and what to do next. Incorporating traceability to 
map code and natural language changes across LLM interac-
tions and provenance to record the tutorial’s evolution can 
be two actionable design options that can ofer two benefts. First, 
it assists the writers in forming efective mental models through 
self-evaluation, which is hypothesized to improve metacognition 
in GenAI systems [64]. Tracing the edit history over a series of 
interactions helps writers better understand the efect of individual 
prompts over content evolution and assists writers in calibrating 
their expectations. 

Second, software tutorial writing is often open-ended but con-
strained by coherence across two modalities, i.e., code and natural 
language. Design features that support traceability and provenance 
can be especially useful in generating both modalities when the 
writers lack a clear prompting strategy and evaluation roadmap. 
Previous work has demonstrated that traceability between the code 
snippets and corresponding documentation attribute to improved 
documentation practises [6], and consistency and accuracy of the 
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overall tutorial [25]. When part of the code and its natural language 
explanations of a tutorial are generated by an LLM, traceability 
provides additional value to track consistency between the human-
written and AI-generated content between code and natural lan-
guage and across several interaction cycles, thereby improving the 
tutorial’s accuracy. 

6.1.2 Design Implication #2: Improving Control over Technical Con-
tent Generation and Editing. Writers struggle to formulate prompts 
that accurately refect their content generation objectives and gener-
alize their prompting strategies across various scenarios [71]. Such 
issues lead to the perception of the LLM being unpredictable. Fur-
thermore, the OpenAI playground lacks clear signifers for prompt-
ing and observing the generated content, thereby adding to the 
confusion. As outlined in Section 5.2, using a single text area for 
the dual purpose of prompting the LLM to generate content as 
well as manually editing tutorial content resulted in the writers 
struggling to diferentiate between the existing tutorial content, 
the new prompts, and their outputs. To fnd a workaround, writers 
formed complex yet mostly unsuccessful strategies to guide the 
model, often leading to more frustration. 

Given these challenges, it is crucial to explore alternative strate-
gies and interactions that could enhance the control writers have 
over tutorial content generation. Previous research by Dang et al. 
[11] investigated two prompting interactions – diegetic (i.e., nar-
rative style and current writing context are part of the prompt) 
and non-diegetic (i.e., prompts are not part of the narrative and 
are instruction-oriented). Their work suggests diegetic and non-
diegetic interactions as efective for inspiration and control, re-
spectively. We observe the benefts of both interactions in diferent 
contexts. Diegetic interactions can be useful for tutorial writers in 
leveraging writing templates as a part of the current writing context 
(Section 4.2) and expecting the LLM to generate the tutorial accord-
ing to the template. On the other hand, writers edit the content to 
meet their standards of tutorial quality. In this case, non-diegetic 
prompting can enable the writers to get suitable suggestions based 
on their researched material (Section 4.1) or refne specifc sections 
to meet quality standards (Section 4.3). For instruction-oriented 
prompting, separating input felds for LLM prompts and man-
ual text edits is extremely important to distinguish user-provided 
context from tutorial content. Furthermore, writers apply a combi-
nation of these prompting strategies and even resort to manual edits 
when they consider LLMs too complex to be used. To account for 
these editing strategies, the system must ofer a fexible interface 
that allows seamless switching between diegetic and non-
diegetic prompting and editing, allowing writers to leverage 
LLMs across varying contexts. 

Understanding the tutorial writing practice ofers important 
hints to improve the writers’ control further when interacting with 
LLMs. Tutorial writing is not a linear process but rather involves 
multiple rounds of investigation before and during the tutorial 
writing process to develop a better understanding of the target 
technology (Section 4.1). In addition, writers include resources such 
as code examples, their outputs, screenshots, and explanations to 
improve the tutorial’s comprehensibility and credibility, as detailed 
in Section 4.2. Allowing LLMs to reference relevant material from 
the writer’s investigation, such as the existing tutorial on the same 

technology, can facilitate prompting for detailed, topic-specifc 
content. Therefore, enabling users to incorporate and fexibly 
select specifc sections of existing material as prompt context 
can be useful to create the right prompts. 

6.1.3 Design Implication #3: Facilitating Verification to Ensure Tu-
torial’s Accuracy. Participants recognized the potential of LLMs 
to assist in researching existing resources and even viewed LLMs 
as potential stand-ins for developers (Section 4.1). However, they 
expressed reservations about directly using content generated by 
LLMs in their tutorials and insisted on verifying the content (Sec-
tion 5.3). The hesitation arises because writers traditionally rely on 
resources authored by other human writers, allowing for a clear 
judgement of their credibility implicating a sense of control [7]. 
Qualities like accuracy, clarity and being up-to-date are crucial 
to software tutorials (Section 4.3). Therefore, having a verifable 
source is critical to the writers’ confdence when synthesizing exist-
ing resources and creating new content. Despite the advancements 
in novel fne-tuning [26] and prompt engineering techniques [37], 
which enable LLMs to contextualize and generate more relevant 
information, the tangible beneft of manual verifcation can be in-
dispensable for fostering confdence in the resulting content. Our 
participants tend to verify the output against their personal exper-
tise or knowledge (Section 5.3). However, human memory is often 
unreliable, subject to evaluator fatigue [5] and complex metacog-
nitive demands [64], which is suboptimal for evaluating tutorials 
that demand a rigorous quality. 

One way to support writers in ensuring the accuracy of LLM-
generated content is to provide tailored verifcation strategies 
relevant to the source and type of each content type used in 
the tutorial. Writers typically verify the LLM-generated content 
by cross-referencing it with trusted external sources, leveraging 
their domain knowledge, or conducting tests to assess real-world 
applicability (Section 5.3). Traditionally, writers create and refer-
ence material, such as code examples and notes (Section 4.2), to 
improve the accuracy and credibility of the tutorial. Allowing access 
to these resources within the interface has the potential advantage 
of minimizing the need for external fact-checking, thereby reduc-
ing the associated cognitive load. Verifcation techniques can difer 
depending on the type of content as well. For instance, verifying 
URLs requires confrming their online existence and ensuring the 
relevance and accuracy of the information on the linked page. In 
addition, the description of the web resource in the LLM-generated 
content should accurately refect the source material. Unlike URLs, 
verifying code snippets involves providing a code interpreter into 
the interface to execute and ensure accuracy. 

A challenge with using LLMs for tutorial writing is maintaining 
consistent syntax and conventions within individual code snippets, 
as well as functional integration across all the snippets in the tuto-
rial. Software tutorials often include several code snippets, which 
may be parts of an individual program interspersed with explana-
tory text (e.g., an introductory Python tutorial explaining function 
calls and loops) or a combination of multiple programs (e.g., a tuto-
rial on setting up a website using a web framework and a database). 
In both scenarios, ensuring consistency involves two critical steps. 
First, each snippet must be checked for consistency. Second, the 
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snippets should collectively form a coherent and executable pro-
gram that aligns with the provided explanations. Implementing 
static analysis tools and continuous integration systems trig-
gered at every revision of the tutorial content can be useful to 
maintain consistency and enhance the overall quality and reliability 
of the tutorial. 

6.2 Limitations and Future Work 
While our study provides valuable insights into using LLMs for tuto-
rial writing, we acknowledge certain limitations that highlight areas 
for future work. The frst limitation concerns unrealistic expecta-
tions or insufcient AI knowledge among users in user-centred 
design processes, which results in poorly built prototypes that fail 
to deliver value [69, 70]. While our participants indeed lacked an 
in-depth understanding of the recent AI technologies, the observa-
tions and perspectives shared by the tutorial writers while using 
the LLM helped us understand their mental models of such tech-
nology and its capabilities, thereby informing their novel needs 
when interacting with AI. Yildirim et al. [70] advocate for a similar 
approach to enhance user-centred design for AI tools, suggesting 
that demonstrating AI’s capabilities and limitations can guide user 
interactions more efectively. They recommend leveraging AI ex-
perts to validate the practicality of designs arising from the study 
before development. Correspondingly, our fndings emphasize the 
importance of collaborative eforts between LLM developers and 
system designers in the user-centred design process. Users might 
be unable to clearly identify and state their requirements or needs. 
In such situations, understanding both their existing practises and 
how they navigate a new technology can help us identify the gap 
in their understanding. Our work further hints at the importance of 
scafolding users’ exploration of technology boundaries and inno-
vations, given the inexhaustible possibilities of novel use of LLMs. 
In our study, we found that while the writers lacked specifc knowl-
edge about using AI for tutorial writing, they actively explored 
and adapted to these gaps. This adaptability might stem from their 
professional role as tutorial writers, which requires experimenta-
tion with software to develop functional tutorials. While our design 
recommendation of incorporating traceability and provenance is 
useful to support such user-initialized experimentation, future work 
is needed to investigate the efectiveness of our recommendation 
and other means. 

Second, the study investigates the writers’ experiences using 
the GPT-3.5 (code-davinci-002 and davinci [49]) models available 
within the playground interface. Using models fne-tuned for tuto-
rial writing or interfaces tailored specifcally for tutorial writing 
might result in diferent experiences for writers than we presented 
in the study. However, as far as we know, such interfaces do not 
currently exist. The design recommendations discussed in Section 
6.1 are intended to guide the development of such novel interfaces 
with specialized functionalities that can assist writers. Better tuto-
rial writing experience might also beneft from developing models 
fne-tuned on software tutorials, prompt engineering techniques 
like introducing code repository-specifc knowledge during prompt 
design [59] and designing corresponding afordances. 

The third limitation is that the writers’ strategies and percep-
tions evolve as they interact with the LLM. The study results have 

implications for the usability and learnability of the system in the 
short term, contributing to its adoption. However, these results 
do not inform any change in perception resulting from long-term 
use. Additionally, the study could not account for the infuence of 
external factors on participants’ perceptions, such as public opinion 
on LLMs. A longitudinal study examining the evolution of writers’ 
interaction strategies and perceptions over extended periods of 
LLM use could further confrm the integration of LLMs in tutorial 
writing processes. 

7 CONCLUSION 
In this paper, we describe the opportunities and challenges for 
LLMs in tutorial writing. Our fndings are based on a user study 
of software tutorial writers with diverse backgrounds and exper-
tise using the OpenAI playground as an exploration environment. 
From the interviews, we identifed performing background research, 
resource creation, and meeting writing quality standards as the three 
areas that are especially relevant for LLM adoption. We observed 
how the writers formulate goals, articulate intentions, observe and 
verify outputs, and refect to revise the subsequent strategies when 
interacting with the LLM. Based on our fndings, we surface three 
design implications, which include 1) efective afordances to de-
velop accurate mental models, 2) clear prompting mechanisms and 
control over tutorial content generation and editing, and 3) diverse 
verifcation features that account for content type and self-created 
resources. These implications hold potential for better interface 
design for LLM-based tutorial creation tools and tools that support 
the generation of both natural language and code. 
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