
Do LLMs Meet the Needs of Sofware Tutorial Writers?
Opportunities and Design Implications

Avinash Bhat Disha Shrivastava Jin L.C. Guo
McGill University Google DeepMind McGill University
Montréal, Canada London, United Kingdom Montréal, Canada

avinash.bhat@mail.mcgill.ca shrivasd@google.com jguo@cs.mcgill.ca

ABSTRACT
Creating software tutorials involves developing accurate code ex-
amples and explanatory text that engages and informs the reader.
Large Language Models (LLMs) demonstrate a strong capacity to
generate both text and code, but their potential to assist tutorial writ-
ing is unknown. By interviewing and observing seven experienced
writers using OpenAI playground as an exploration environment,
we uncover design opportunities for leveraging LLMs in software
tutorial writing. Our fndings reveal background research, resource
creation, and maintaining quality standards as critical areas where
LLMs could signifcantly assist writers. We observe how tutorial
writers generated tutorial content while exploring LLMs’ capabili-
ties, formulating prompts, verifying LLM outputs, and refecting on
interaction goals and strategies. Our observation highlights that the
unpredictability of LLM outputs and unintuitive interface design
contributed to skepticism about LLM’s utility. Informed by these
results, we contribute recommendations for designing LLM-based
tutorial writing tools to mitigate usability challenges and harness
LLMs’ full potential.

CCS CONCEPTS
• Human-centered computing → User studies; User interface
design; • Software and its engineering → Software notations
and tools.

KEYWORDS
Writing Support, Software Tutorial Writing, Large Language Models

ACM Reference Format:
Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo. 2024. Do LLMs Meet the
Needs of Software Tutorial Writers? Opportunities and Design Implications.
In Designing Interactive Systems Conference (DIS ’24), July 01–05, 2024, IT
University of Copenhagen, Denmark. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3643834.3660692

1 INTRODUCTION
Software tutorials refer to the instructional documentation intended
to guide the readers progressively through tasks concerning soft-
ware features. Due to their accessible and engaging style and task-
oriented focus, tutorials are indispensable tools for readers learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0583-0/24/07
https://doi.org/10.1145/3643834.3660692

a new technology [40]. A study by Aghajani et al. [1] reveals that
practitioners perceive tutorials as invaluable for numerous soft-
ware engineering tasks. Beyond supporting software users, tutorial
creation signifcantly benefts its writers, including professional
growth and learning [3, 50]. However, creating software tutorials in-
volves a complex interplay of many challenging aspects, including
building sufcient technical background of the target technology,
writing the reference programs, identifying relevant code snippets
to include in the tutorial, clearly presenting and explaining code
snippets, and formatting tutorials as incremental stages to facilitate
learning [24, 25, 66]. Addressing these aspects insufciently can
result in misleading or faulty content, resulting in poor tutorial
quality [2].

Meanwhile, recent advances in language technology have at-
tracted notable attention for their potential in developing efective
writing tools. In particular, Large Language Models (LLMs), ma-
chine learning models trained with textual data on massive scales
to predict and generate language, are increasingly being used to
support various aspects of creative writing such as ideation [34],
text generation [12], and draft revision [14]. Nevertheless, their po-
tential in software tutorial writing is unexplored. Tutorial writing
involves creating instructional content that is engaging, clear and
factually accurate across both code and natural language. When
trained with large-scale corpora of both natural language and source
code, LLMs can generate content across a broad range of topics
and predict text and code across multiple natural and programming
languages. Such a capacity makes LLMs a suitable candidate for the
tutorial writers’ toolkit. Moreover, interacting with LLMs is typi-
cally through textual prompts, a paradigm that is versatile while
requiring minimal efort to learn.

Despite LLMs’ potential to be a capable tool, the actual user
experience with LLMs can sometimes be flled with uncertainty
and dissatisfaction [35]. Notable issues are inconsistencies in model
output [19, 68], lack of trustworthiness [21], questions about con-
tent ownership [7], and outdated information [28]. The extent to
which these issues impact the utility of supporting the tutorial writ-
ing process remains uncertain. The non-deterministic nature and
sensitivity to changes in prompts [39] also present a signifcant chal-
lenge for tool designers in creating appropriate interactions that
can efectively use their capabilities [13, 69]. Moreover, a smooth
integration of LLMs into existing processes and tools of the target
tasks is far from intuitive [65]. To provide essential support for
software tutorial writers with the LLMs, it is, therefore, essential to
carefully examine the needs of tutorial writers, how the capacities
of LLMs might meet their needs, and how to align such capacities
with writers’ existing practices and workfows.

1760

https://doi.org/10.1145/3643834.3660692
https://doi.org/10.1145/3643834.3660692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643834.3660692&domain=pdf&date_stamp=2024-07-01

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

Software Tutorial Writing Context

Subsequent Interactions

Interaction with LLM

Formulating
expectations and

goals of interaction

Articulating
intentions and

goals into prompts

Observing
and verifying the

generated output

Reflecting
on expectations

and revising future goals

Content creation (code
& textual explanations)

Meeting writing quality
standards

Performing research on
background concepts

DR: Incorporate traceability to
monitor changes due to prompts
DR: Capture the provenance to
reason the impact of using LLMs on
writing outcomes

DR: Provide clear affordances to distinguish
prompting and manual editing
DR: Allow seamless switching between
different prompting strategies
DR: Allow flexible selection of relevant
information in the prompt

DR: Provide verification strategies
accounting for content source and type
DR: Incorporate features to maintain coding
consistency at individual snippet level as well
as across the whole tutorial

Figure 1: An overview of our key fndings, including relevant areas for adopting LLMs in tutorial writing context (derived from
interviewing tutorial writers) and aspects during direct interaction (derived from observing writers using LLM for writing
tasks). Our proposed Design Recommendations (DRs) for building LLM-based tutorial writing tools are indicated next to the
relevant interaction aspects.

In our work, we investigate how LLMs might be efective in
meeting the needs of tutorial writers through a user study with
seven technical writers with extensive experience in writing and
publishing tutorials. Instead of solely focusing on how LLMs can
solve tutorial writers’ challenges in their existing practice, we also
examine novel use cases and interaction patterns of tutorial writers
when provided with advanced technology like LLMs. In particu-
lar, we started with an interview with the writers to understand
their activities and concerns related to tutorial writing and how
those activities might beneft from the assistance of LLMs (Research
Question 1). Subsequently, we gave them a brief introduction to
LLMs’ capabilities and limitations and observed their expectations,
strategies, and challenges when using an LLM for tutorial writ-
ing (Research Question 2). The LLM used in the user study was
Codex [47], an LLM specifcally trained on both natural language
and source code. The interaction was through a web application
called playground, ofered by OpenAI to enable users to prompt
Codex and other models.1. We fnally discuss our observations to in-
form potential opportunities and practicalities in designing AI tools
for tutorial development. By combining user-centred design with
technology-driven inquiries, we contextualize the tutorial writers’
values in the expanded innovation space of tutorial tools aforded
by LLMs [69, 70].

The interview study results surface three areas that are most
relevant to the capabilities of the LLMs in generating code and
natural language for tutorial writers: (a) performing research on
background concepts, (b) resource creation, and (c) meeting writing
quality standards. By observing how writers interact with the LLM,

we fnd four aspects concerning their interaction with LLM-based
tools. First, writers approach the interaction process once they
formulate a goal for the interaction based on certain expectations.
These goals involve understanding the model’s technical limits or
directing the model to produce desired tutorial content. Next, they
articulate their intentions to the LLM in the form of prompts. Our
participants employed strategies to elicit relevant content, such as
providing the overall tutorial structure and refning the prompts
with topic-specifc keywords.

Once the LLM generates an output to the specifed prompt, writ-
ers observe and verify the output in the context of their prompt and
the overall tutorial. Verifcation involves leveraging their domain
expertise, consulting existing documentation or references online,
and sometimes executing the code generated by the LLM. Finally,
writers refect and revise their expectations and future interaction
goals based on the usefulness of the output and how well the output
meets their expectations. These aspects are performed continuously
in subsequent interactions until the objective is achieved or the
LLM usage is abandoned. We provide an overview of these stages
and aspects in Figure 1.

While resembling the cognitive processes of writing in previous
literature [17], the LLM-interaction process we observed is more
fne-grained and captures the unique dual objectives of the tutorial
authors when using the LLM – understanding the capacity and
limitations of the tool and achieving the writing goals. Informed by
these fndings, we discuss design implications and make recommen-
dations for interface design of LLM-based tools for tutorial writing
that can enhance the interaction of users along the highlighted
dimensions.

In summary, our work makes the following contributions: 1https://platform.openai.com/playground

1761

https://1https://platform.openai.com/playground

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

(1) Identifying unique workfows, considerations, and concerns
of software tutorial writing to inform the integration of LLM-
based tutorial writing tools.

(2) Depicting the interaction strategies and corresponding chal-
lenges faced by the tutorial writers while using LLMs.

(3) Proposing design recommendations for LLM-based tutorial
writing tools that address the primary considerations from
both the writers’ existing workfows and characteristics of
their interaction with LLMs.

2 RELATED WORK
Our work is informed by existing research on tool support for
authoring software tutorials and interactions for code and natural
language generation using LLMs.

2.1 Tool Support for Authoring Software
Tutorials

The research landscape for software tutorial creation addresses
challenges such as selecting and maintaining consistency in the
code examples [20, 24, 25, 66], simplifying the capture of screen-
shots and other resources to be included in the tutorial [38, 45, 72],
and orchestrating capture of crowdsourced information like com-
munity annotations for their reader’s understanding [15, 22, 32].
The solutions proposed in these studies facilitate integration and
maintenance of supporting resources in the tutorial to add context
while expecting the writer to manually perform aspects such as de-
veloping code implementations, selecting and editing relevant code
snippets to include in the tutorial, and crafting high-quality expla-
nations. An interview study by Head et al. [25] highlights the need
for support in selecting programming tutorial topics, producing
accurate and engaging content, and integrating code snippets with
textual explanations. Our work expands this inquiry beyond pro-
gramming tutorials to include general software technology. We are
particularly interested in the applicability and challenges of using
LLMs in these workfows – how the software tutorial writer might
leverage the LLM’s generative capabilities in both code [10, 65]
and detailed explanation [36] using natural language statements
or prompts [39] to accelerate the tutorial authoring and resource
generation process with minimal human intervention. Our work
examines user interaction with LLMs for writing tutorials focusing
on unique benefts like generating coherent code from natural lan-
guage and summarizing or explaining code. This approach difers
from prior studies, which concentrate on editing tutorials with
either reference solutions or expect humans to perform the edits
manually.

2.2 Intelligent and Interactive Assistants for
Generating Code and Text

While LLMs excel in generating code and natural language, their
usability in complex programming and writing tasks is often lim-
ited because of the mainstream design of human-LLM interac-
tion. Vaithilingam et al. [65] reported that existing LLM-based tools
used for code generation like Copilot2 generate large blocks of code,
making it difcult for humans to debug and refactor code efectively.

2https://github.com/features/copilot

Barke et al. [4] identifed two user interaction patterns while using
Copilot: acceleration, where programmers use the tool for rapid
completion of known tasks, and exploration, employed for explor-
ing alternate programming solutions. They used these fndings to
advocate for better usability of programming assistants, such as
providing users with greater control over the code generation and
capabilities to validate the generated code. More recently, Ross et al.
[54] explored a conversational assistant for general assistance dur-
ing programming tasks, including code generation, and observed
that the conversational paradigm improves the co-creation aspect
in code generation. These works highlight the importance of study-
ing human interaction strategies to inform the design of LLM-based
tools.

Human-LLM interactions for text generation have been studied
across several dimensions, such as needs and values of users [7,
18, 27, 31, 53], writing domains [9, 43, 58], and writing stages [17].
However, existing work on designing tools to support writing activ-
ities lacks a discussion on tutorial authoring [17, 33]. For example,
by analyzing 33 systems from the literature, Gero et al. [17] map the
design space based on the Cognitive Process Theory of Writing [16].
Their work identifes a lack of support in planning and reviewing
stages of writing for highly constrained tasks due to the poor capa-
bilities of language technologies at the time. Our work builds upon
their result to study the task of tutorial writing in-depth, where we
identify the specifc writing processes where LLM can be promising.
Tutorial writers have open-ended pedagogical goals [30] involving
the dual modalities of code and natural language. At the same time,
they are tightly constrained by the various aspects of the targeting
software, such as the programming language, the underpinning
technology, the software version, etc. We investigate strategies and
challenges faced by the tutorial writers as they interact with Codex,
an LLM capable of generating both code and natural language,
aiming to make design recommendations for this open-ended and
constrained task. Furthermore, our fndings are pertinent to the
needs during LLM interactions rather than the general thought
process outlined in the Cognitive Process Theory of Writing.

3 STUDY DESIGN
To investigate how tutorial writers interact with an LLM, we con-
ducted an exploratory study with seven highly experienced tutorial
writers from diverse backgrounds. Specifcally, the goal of the study
was to draw out 1) the current workfows and challenges of writers
in their tutorial creation process to inform areas where the use of
LLMs can be benefcial, 2) the writers’ perceptions and expectations
when using LLMs, as well as the strategies writers employ to utilize
LLMs efectively for their specifc needs and expectations. In this
section, we discuss the study design to meet our goal. Our study is
approved by the research ethics board of the authors’ university.

3.1 Participants and Recruitment
We aimed to engage diverse individuals with extensive experience
in writing and publishing technical tutorials, ensuring they could
provide insights into the challenges, strategies, and opportunities in
this area. During the recruitment stage, each potential participant
was asked to share at least one of their published technical tutorials;

1762

https://2https://github.com/features/copilot

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

one author manually validated the tutorials to ensure their exper-
tise. Validation involved checking for sufcient length and depth in
the subject matter and the inclusion of instructional resources such
as code snippets or screenshots. We had 33 sign-ups for the study
from technical writing communities on Slack, Reddit, and LinkedIn,
of which 19 were excluded for not sharing links to a published
tutorial. Of the 14 who shared the links, four were excluded based
on the quality of the tutorial, and three did not proceed with the
interview scheduling process. Finally, we recruited seven partici-
pants (henceforth referred to as �1-�7). Table 1 provides relevant
demographic and professional information of all the participants
in our study. As a token of appreciation for participating in the
study, each participant was compensated with an Amazon gift card
valued at $20 CAD or an equivalent amount in their local currency.

Recruiting participants with specialized expertise is difcult to
carry out efectively at a large scale. The rigorous recruitment strat-
egy we followed ensures the expertise of the selected participants.
Upon inspection, our participants demonstrate sufcient diversity,
representing several facets of the software engineering discipline.
They provide insights into the documentation practice for open-
source communities, startups, and established companies. Their
instructional materials are disseminated across multiple platforms,
including company websites, community blogging platforms (e.g.,
Medium), and GitHub. The participant group comprised junior and
senior experts in software development and technical writing in
terms of years of experience and writing frequency. Given the scope
of this work, we deem our study sample is appropriate [23, 46, 61];
input from our participants can provide a rich account of the possi-
bilities and limitations of using LLMs to aid tutorial writers with
the generation of software tutorial content and resources in various
context.

3.2 User Study Procedure
The study consisted of a semi-structured interview about existing
tutorial writing practices and an observation component where we
examined how participants used LLMs for tutorial creation. The
complete study for each participant lasted around one hour and
was screen-recorded.
Semi-structured interview. The initial part of the study involved
interviewing participants [56] to understand their current practices
and workfows in tutorial writing. We focused on their experiences,
tools used, and techniques for writing, organizing, and maintaining
tutorials. We asked the participants to contextualize this discussion
using (but not limited to) the tutorials they submitted during the
recruitment to understand their practices with concrete examples.
Participant Observation. We performed direct observation [41,
51, 56] to get an accurate understanding of the nuanced interactions
with the LLMs, especially in the context of writing software tutori-
als. Since the LLMs were not prevalent in tutorial writing practice
during the study period (August and September 2022), any retro-
spective account would be insufcient to understand the individual
contexts in which the users interacted with the LLM. Instead, we
asked the participants to mimic the scenario of writing a tutorial on
a topic they were familiar with while being assisted by Codex, one
of the most capable models trained on both code and natural lan-
guage at the time of the study. Participants interacted with Codex

through the OpenAI playground [48], a web application for easy ac-
cess to the OpenAI LLMs. The playground presents a large text area
along with a panel where the users can choose the LLM settings,
notably, mode of interaction (one of Complete, Edit, or Instruct),
model from diferent model families such as Codex3, maximum
length token (default value of 256), which indicates the number of
tokens generated by the LLM per request, and temperature (default
value 1). Since most of the participants had not used the tool prior
to this study, we provided a brief introduction and introduced the
playground settings. Participants were free to modify the settings
at any point during the exploration. We asked participants to follow
the ‘think aloud’ protocol [29, 60] during the exploration, encour-
aging them to voice their thoughts, actions, and expectations as
they interacted with the tool. The interviewer occasionally asked
participants about their actions and impressions of the interaction
with the tool. While the study protocol might result in participants
behaving diferently due to being observed, we wanted to gain rich
insights into the participants’ thinking process and perspectives
as they used the tool, which is difcult to obtain from other study
formats [52].

During the observation phase, we chose to leverage a general-
purpose model like Codex over fne-tuned tutorial writing models
for two reasons. Firstly, given the open-ended nature of tutorial
writing, it was uncertain which specifc features of the LLMs the
writers might engage with. Opting for a fne-tuned model targeted
at a particular task could potentially limit our understanding of
the broader applications of LLMs in the context of assisting tu-
torial writers. Additionally, fne-tuning a model without precise
direction could lead to premature optimization for specifc tasks,
which could possibly skew the user’s perceptions towards believing
that LLMs are only suitable for those particular aspects. Using a
general-purpose model like Codex enabled us to study the diverse
aspects of tutorial writing, which could be later used to fne-tune the
LLMs for specifc objectives targeted at the most desired use cases.
Secondly, our objective was to investigate the usability aspects
of human-LLM interaction in tutorial writing and derive design
considerations. Considering this objective, we design our study
methods to post minimal constraints on the model itself and to be
applicable amidst the advancements in language technologies.
Refection. We concluded the study by asking the participants
to refect on their interactions with the LLM for writing tutorials,
including its perceived usefulness, advantages or challenges, or
any other relevant aspects. We also asked the participants about
potential features they expected to have for an LLM-based tutorial
writing tool.

3.3 Data Analysis
We performed a qualitative analysis of the audio transcripts of the
interview study extracted using Microsoft Teams. We analyzed the
participants’ refections about their existing writing practises in-
volving text production or code snippet generation, where LLMs
could be leveraged to add value to the writing workfows. In addi-
tion, we used screen recordings to observe participants’ interactions
with the LLM in the playground. Here, we leveraged a hybrid the-
matic analysis approach to make refective observations [63]. First,

3Codex is discontinued in March 2023 [49].

1763

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

Table 1: Background of the Study Participants. English profciency is based on Interagency Language Roundtable Scale [55].

Participant
Years in
Software

Engineering

Tutorial Authoring
Frequency (Past 3 Yrs)

Tutorials
Written

Experience with AI
tools Current Occupation English Profciency

�1 <5 years Weekly/biweekly 5 Not used previously
Lead, technical
documentation

Professional Working

�2 <5 years Once a month 2 VS Code IntelliSense
University Student

(Computer Engineering) Native/Bilingual

�3 11-15 years Once a month 20 Not used previously Technical Writer Professional Working

�4 11-15 years 2-3 times a week 50
GPT-3 based tools

(Jasper AI)
CEO (Technical writing

agency) Native/Bilingual

�5 1-2 years Once in several months 20 VS Code IntelliSense
Student, Technical

Writer Native/Bilingual

�6 >15 years Once a month 50 Not used previously Technical Writer Native/Bilingual

�7 11-15 years Once a month 50 VS Code IntelliSense
Software Engineer, Site
Reliability Engineer Full Professional

the frst author reviewed the audio transcripts and screen record-
ings to annotate the salient themes and generate the initial codes.
Next, the remaining two authors further critiqued and joined the
discussion to ensure robustness. As insights emerged from the in-
terviews, we referred to the literature on writing processes and
employed an abductive and retroductive inference [42] strategy.
We present our results in the subsequent section and draw paral-
lels to the existing theories on interaction design and discussions
regarding tutorial writing.

4 FINDINGS FROM SEMI-STRUCTURED
INTERVIEW

From the interview with the tutorial writers, we distill the crucial
workfows, considerations and challenges they face to answer: RQ1:
What aspects of the tutorial writing are relevant and might
beneft assistance from LLMs? Specifcally, we describe how
the writers undertake thorough background research prior to the
writing, their development of content along with resources such as
code snippets and notes, and the refnement of developed content
while adhering to self-imposed quality standards. We also discuss
participants’ refections on how LLMs can support them in these
workfows after they interact with the models (code-davinci-002 and
davinci [49]) available in the playground interface for the writing
tasks in our study.

4.1 Assisting with Research of Background
Concepts

4.1.1 Existing Practice. Before writing a tutorial, writers perform
a thorough research of the existing background information about
the topic. Their research typically involves investigating existing
resources through various channels, including existing documenta-
tion and online platforms like YouTube, internet forums, and Reddit.
Through research, they identify gaps in the publicly available con-
tent and gauge potential information that the learners might seek
regarding the subject. Such a process facilitates their own learn-
ing and mastery, especially when dealing with new technology

or unique applications of familiar technology. In instances where
existing resources do not cover certain information, they lever-
age their access to developers, if available, for further insights and
clarifcations.

Participants highlighted two challenges related to the interaction
with developers. First, developers often presume that the writers
possess a foundational understanding of background concepts dur-
ing technical discussions (e.g., “[Developers] expect us to understand
certain things in the development area. They don’t know that we are
totally new to this” [�3]). This expectation leaves writers, espe-
cially those new to the technology, with a difcult task to quickly
grasp complex background concepts. The second challenge is when
writers are blocked due to developers being unavailable for such
discussions (e.g., “Getting a developer’s time is sometimes difcult, es-
pecially during the sprint or a deadline” [�6]). Participants acknowl-
edged that the recent shifts towards remote work had facilitated
convenient and productive collaborations, with tools like Slack and
Zoom ensuring quicker responses by the developers.

4.1.2 Opportunities. The conventional approach to gathering in-
formation for tutorial writing is cumbersome since it involves sift-
ing through scattered documentation or consulting with busy de-
velopers. Participants acknowledged the potential of using LLMs to
streamline this process. For instance, �4 identifes LLMs as a poten-
tial stand-in, stating “It would be like a replacement for a developer
to ask technical questions. So, if I can’t fnd a developer then I could
ask the model, what does this piece of code, module, or web page do?
What is it for?”. Echoing this sentiment, �3 observed, “Even when
not probing developers, we have to get defnitions and details from
the Internet, for which this is extremely helpful.” While collaborating
with developers can be insightful for acquiring information not
readily available in the documentation, there is an opportunity to
leverage LLMs more efectively in this context. For example, �6
suggests enhancing LLMs by training them on the design documen-
tation, “The design documentation, which is usually internal, often
explains the rationales for projects. If you could somehow train them,
that’d be valuable to explain the rationales and the intentions”.

1764

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

4.2 Creating Instructional Code and Text
Content

4.2.1 Existing Practice. Writers create a range of content during
the tutorial writing process. Content like illustrative code examples
and outputs or screenshots (e.g., a tutorial for using software with
a graphical interface) enhance the tutorial’s instructional value and,
therefore, are developed to integrate into the tutorials. However,
they lack sufcient tooling support to tutorial writing specifc tasks.
While developing programming tutorials, writers frst implement
and execute the complete code. Having a working implementation
adds credibility to the tutorials and facilitates the capture of relevant
code snippets and outputs, which ofers context and clarity for the
readers (e.g., “You have to rely on [code examples] to make sure [the
readers] follow the intentions of the API, and not abuse the API. Then
I’ll throw in the explanatory content around the logical chunks and
explain each chunk and the rationale” [�6]). Participants reported
using IDEs, text editors, and, in one case, even traditional pen and
paper to develop the implementations.

When it comes to working with code, they needed to “involve the
support and collaborate with developers as well” [�3] which required
adapting tools like GitHub (e.g., “Developers are more familiar with
the GitHub so it’s easier for both of us. But for some technical writ-
ers, there will be a learning curve to get used to this” [�3]). This
collaboration tends to beneft the developers as it allows them to
identify and rectify previously unidentifed issues in the existing
documentation (e.g., “Sometimes the client has never actually done
what they’re asking before, and it might not actually work the way
they think it should. That’s what they’re looking for partly, somebody
to help catch those kinds of issues and errors in their documentation.
But that can be very frustrating as a writer” [�4]).

Writers execute and verify the code implementation in the tu-
torial at multiple stages, starting from the initial development and
again while adding textual explanations. This ensures the fnal tu-
torials are free from errors which arise when adding additional
content and narratives (e.g., “I usually make edits to make the con-
tent more human readable. It’s easy to introduce syntax errors while
doing that, so I copy it back to the command line to make sure that
I didn’t break anything” [�7]). Participants reported inadequate
support towards supplementary tasks like managing references
to successful and unsuccessful code implementations or capturing
complex screenshots requiring extensive setup (e.g.,“Software devel-
opers have amazing tools because they are software developers. They
can make their own tools. Technical writers have unmet needs because
we’re not software developers for the most part, and we can’t make
tools, so we have to rely on developers to make tools for us” [�6]).

Resources like notes or writing templates are often intended as
personal reference material to assist the writing process, though
they may not be included in the fnal tutorial. Participants stated
that these resources are useful when they encounter challenges like
writer’s block, which poses challenges in coherently articulating
ideas (e.g.,“Writer’s block was more frustrating than other [challenges]
because I have written something which doesn’t make sense, but I don’t
know what to do” [�5]). Writers construct notes by documenting
their everyday work and recording their solutions to problems they
reckon the readers might encounter. Writing templates consist of
instructions, checklists, or good practices which are either sourced

from public repositories like The Good Docs Project4 or are based on
the writers’ own prior experiences in tutorial creation. Participants
also reported turning to AI-powered tools such as QuillBot5, which
assist with paraphrasing or restructuring the content to get past
writer’s block.

4.2.2 Opportunities. The capability of LLMs to generate both text
and code can allow writers to avoid constantly switching between
various IDEs, text editors, and reference materials. �6 illustrated the
possibility of transforming the traditional tutorial creation work-
fow, “It fips the workfow around because instead of frst making sure
the [tutorial steps] work and then retracing your steps and putting
them in [tutorial], here can start with the goal and put something out
and then you start to test it out.” � 7 emphasized the efciency of
this approach, mentioning that what took mere seconds with the
LLMs, traditionally “would have taken easily 30 minutes to put out.”
Such a shift in the creation process allows writers to focus more on
refning the content and ensuring it connects well with the target
audience.

4.3 Meeting Tutorial Quality Standards and the
Needs of Readers

4.3.1 Existing Practice. Writers adhere to self-imposed quality stan-
dards such as clarity, readability, completeness, and being up-to-
date, prioritizing the information needs of their audience while
aiming to maintain the tutorial’s accuracy and relevance. This fo-
cus signifcantly infuences their decisions regarding the tutorial’s
scope, writing style, and the choice of resources to include in the
tutorial.

Given the rapid pace of technological updates, keeping the tu-
torial up-to-date is a critical challenge in ensuring tutorial quality.
Writers either keep track of code changes themselves or rely on de-
velopers for updates (e.g., “Most of the time, [developers] inform us if
there are any changes in the code or there is a new release. Sometimes
they forget, and when users point out that the tutorial seems obsolete,
we update” [�3]). In cases of minor updates, developers modify
the tutorials despite being less experienced in writing, which in
turn necessitates further editing (e.g., “We look for technically strong
developers to write tutorials. Then, we fnd editors who can read their
tutorials, clean them up, and improve the writing without breaking
the technical accuracy” [�4]). When signifcant changes need to be
made quickly in fast-evolving felds like machine learning, writers
prefer to create new tutorials rather than revisit existing ones (e.g.,
“In 8-9 months, there are new versions of tools with new features. You
can’t go back to your tutorial and change everything. The only way
is not to update the tutorial but to write new ones” [�5]). A proactive
strategy discussed by the participants is to design tutorials with a
focused scope, covering select features to reduce the extent of nec-
essary updates (e.g., “A tutorial usually touches lightly on a handful
of features, and unless those features change drastically, there’s not
much maintenance” [�6]).

Writers greatly value clarity and readability (e.g., “I edit con-
tent to make it more human-readable, pretty, and easily digestible.
Like breaking up commands into multiple lines” [�7]). They aim to

4https://thegooddocsproject.dev/
5https://quillbot.com/

1765

https://5https://quillbot.com

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

provide the necessary context within the tutorial to minimize the
need for any external references (e.g., “I don’t like sending people to
[external] links. I rather synthesize the content, reword it and make
it more clear” [�7]). However, achieving the balance in providing
the right amount of details can be challenging since writers need
to anticipate and tailor the content based on the reader’s technical
level (e.g., “With a very junior-level reader, I might want to include
every step but with a senior person, I might jump right to the things
that are relevant to them” [�4]). This balance is crucial in designing
tutorials that are not only informative but also instill confdence in
users to navigate and explore the system. One strategy is to develop
short and focused multi-stage tutorials that gradually increase in
complexity and scope. Despite existing tools like Confuence that
are used to organize and structure the tutorials, articulating concise
tutorials remains challenging (e.g., “Trying to condense and be to the
point but also remain very clear and read well is the challenge” [�7]).

4.3.2 Opportunities. Participants acknowledged LLMs’ efciency
in tasks like translation, which is essential for tutorial content dis-
semination. Translation extends content accessibility and broadens
its reach. Multilingual support is often a requirement posed by the
companies, “In EU, if you have documentation on your site, you have
to have it in the native country’s language as well. The German and
French companies like what we write [in English], but also want to
have it in French and German, their native languages, and that’s a
big deal for them” [�5]. However, the challenge lies in ensuring
that the translated content maintains its technical accuracy and
contextual relevance. Versions in diferent languages need to main-
tain the same level of accuracy and clarity as the original, often
necessitating human oversight (e.g., “I don’t see how any model, even
if it works, will just write the things. How will it know to maintain
itself?” [�1]).

5 FINDINGS FROM PARTICIPANT
OBSERVATION

To further understand the design considerations for using LLMs
in tutorial writing, we must investigate how the writers might
approach LLM interaction for concrete writing tasks. In this section,
we draw from observations of how participants utilized the LLM
in tutorial creation to answer: RQ2: What are the expectations,
strategies, and challenges when writers use LLMs for tutorial
creation? In particular, we discuss how writers formulate initial
expectations and goals of interaction, articulate their goal through
prompts to LLMs and other parameters, observe and verify the
generated content, and eventually refect and revise their goals and
interaction strategies based on the output.

The prospect of using LLMs for writing a complete tutorial was
new to all our participants, given the lack of established and mature
LLM-based tutorial writing tools in the market; four participants
(�2, �4, �5, �7) had prior experience with using intelligent coding
tools (see Table 1). Therefore, each participant was briefy intro-
duced to the capabilities of individual models (code-davinci-002 and
davinci [49]) before the observation study and the features of the
OpenAI playground that might be relevant to their writing process.
We encouraged the participants to use LLMs for broader tutorial
writing workfows that they discussed in the interview, as described
in the previous section. Examining their interactions within the

context of outlined tasks situates their perceptions, strategies, and
challenges in adapting LLMs to the unique requirements of tutorial
creation. When introducing the quotes from the participants, we
indicate the actual textual prompts our participants typed on the
playground interface by enclosing them in brackets and highlighted
with a [diferent font] for clarity.

5.1 Formulating Expectations and Goals of
Interaction

Participants possess a mental model of the LLM, i.e., an internal
representation of the LLM’s functionalities, capabilities, and an-
ticipated behaviour. Users form expectations and defne the
goals and intentions according to their mental model as they
approach the LLM in each interaction cycle. The objectives of the
interaction might be to update the mental model (e.g., to probe and
understand the capability of LLMs better or to explore the possible
ways to elicit the best responses from it) or to use LLM towards the
overall writing goal (e.g., to complete a section in the tutorial or
to edit a specifc step in the tutorial). While working with an LLM,
the interaction goals frequently switch between the two as the user
attempts to decipher the LLM’s capabilities and employ them for
tutorial writing.

Some participants intended to start by replicating the strategies
shown in the initial introduction of the study (e.g., “Just repeating
whatever worked successfully before, as you showed me” [�6]). As
familiarity with LLMs grew, participants began experimenting and
calibrating the workfows (e.g., “Let me use a diferent input [Ex-
ploring diferent Embeddings]. I want to see what comes up” [�5]). Such
experimentation was often related to understanding the capacity of
LLM (e.g., “Can we describe something more sophisticated than just
a single function? Say I gave it the source code to an entire program
and see if it understands how a human would use it?” [�6]).

Since tutorials are often written for a particular version of a spe-
cifc technology, participants expressed the need to understand
the model’s technical boundaries and the sources of the in-
formation (e.g., “Is the model working from the information they
got from the help content, like the documentation or source code?”
[�6]). However, such information is not readily available or easily
assessed, leading to questions like “How quickly do they update the
model? At one point they indexed a lot of stuf from Google results.
Are they doing that continuously?” [�4]. To obtain this knowledge,
participants intend to leverage circuitous strategies (e.g., �4 de-
scribed a strategy they employed “Trying to fgure out the limit, I
started playing around [tell me about the latest updates to Redis], and see
which version it tells me about because that gives you the decay of
how updated it is”). Prior experiences and perceptions about the ca-
pabilities of LLMs infuenced the participants in their probing (e.g.,
“I’ve seen one example on the Internet about a security issue when you
would ask [the LLM] about API keys, and it will give you someone’s
API keys. What happens if you tell the Playground to generate AWS
keys? [generate AWS keys]” [�1]).

Participants refected being skeptical and hesitant since they did
not understand the inner workings of the model (e.g., “We don’t
understand what this model does. I don’t know what I’m entering, and
I don’t know what’s happening with it. I don’t wanna use it” [�1]).
While there is interest in understanding the LLMs’ training

1766

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

processes, data update cycles, strengths and weaknesses, it
is primarily to gauge the tool’s relevance and utility for tutorial
writing. �6’s query, “The model knows about [software] due to its
training on documentation. But what about when documentation is
absent?”, pinpoints the desire for clarity on how LLMs acquire and
utilize information.

5.2 Articulating Goals and Intentions into
Prompts

Users communicate their intentions to the LLM through carefully
constructed prompts and sometimes even specifc LLM parame-
ters. However, accurately articulating their intentions can be
challenging, leading to ambiguous or misdirected prompts.
The user’s perceptions of the capability of the LLM can skew their
prompts toward either oversimplifcation or excessive ambition.
Consequently, users found themselves dedicating signifcant ef-
fort towards refning their prompts to efectively “phrase it for
the machine” [�4]. This task is further complicated by a lack of
transparency in how changes in prompts have impacted the LLM’s
outputs.

As the participants worked to align the LLM’s output with their
writing objectives, they devised multiple strategies to steer the
LLM (e.g., “Everything that I’ve considered valid here, I’ll retain, and
then I’ll guide [the model] in a slightly diferent direction” [�7]).
Their prompting techniques mirrored traditional manual tu-
torial drafting approaches, such as providing an overarching
structure of the target tutorial. �5, for example, structured their
tutorial by starting with section titles, noting, “I want to start with
an introduction. I would probably input the title [Searching for Semantic

Similarity - Introduction] and see the [LLM’s] response”. Participants also
frequently edited and reformulated their prompts, such as
adding/removing topic-specifc keywords (e.g., “To avoid bias, I
removed NLTK [from the context window], prompting it to explore
GloVe. When I excluded GloVe and added the word choosing, it began
suggesting alternatives. It eventually provided three sensible options”
[�5]). Crafting and tinkering with prompts to achieve the intended
output required considerable time and efort from the participants.
Experienced participants questioned the actual value derived from
using the LLM (e.g. “It takes this art form to get it to actually produce
relevant output. I have to think about what am I actually getting it to
do. When I am a developer who’s done this for many years, it would
be faster for me to do it myself” [�4]).

The usability of an LLM’s interface signifcantly infuences how
users understand its capabilities. While we acknowledge that the
playground’s primary aim is model exploration and not tutorial
writing, we observed that the usability issues led to misconcep-
tions and eventually resulted in underutilization or abandon-
ment of the LLM. Two primary issues of the interface were the
inability to diferentiate between prompts and generated text and
unclear indicators of how prompts and model parameters afect
text generation. The playground provides a single text box for both
input and output in the Complete mode, confusing the participants
about what constitutes input for the LLM (e.g., “There’s nothing
related to deployment [in the generated content] because it’s biased
by the multitude of input before deployment” [�5]). This confusion
led to strategies like pruning the existing content in the text box to

manage context. Nevertheless, participants expressed skepticism
about adopting the interface to the actual tutorial writing (e.g., “If
you want to write a blog in continuation, how can you not have the
whole next thing? Is it expected to completely remove content every
time to let this tool do the job?” [�5]). Furthermore, the lack of clear
indicators to illustrate the efect of prompts or model parameters
necessitated the participants to often speculate on the required
prompts and parameters to obtain desired output (e.g., “I’m sure it’s
not gonna be able to create all that in just 256 characters. I guess I can
up [maximum token length] and see what happens” [�4]). Several
participants observed the generation stopping mid-sentence due to
a tool-imposed limitation on the token length “OK, so I ran out of
tokens there” [�6] and resorted to workarounds to continue genera-
tion “I guess if I hit ‘submit’ again, is it gonna keep going or what?
What would it do?” [�4]. However, such strategies were not appar-
ent and resulted in judgments like “fall short, but at least complete
a sentence” [�5]. While the playground ofers modes like Complete,
Edit, and Instruct, their utility was not obvious or cumbersome as
the participants had to copy and paste the target content between
the modes manually. Participants attributed the low usability of
features as one of the biggest factors for abandoning such tools for
tutorial writing (“I think there are too many issues for it to be worth
working on it. I have no idea how to make it usable” [�1]).

Regardless, there is a constant disconnect between user intent
and how to prompt the output, as illustrated by �5’s comment, “for
this [model], you’ll have to fnd what exactly to tell them. It’s like
communicating in a diferent language.” Participants also indicated
a need for fne-grained control over content generation and editing.
As �5 put it, “it should let me provide some basic keywords that I
want to include and not just go on its own spree of doing whatever it
wants.”

5.3 Observing and Verifying the LLM Generated
Output

Users observe the accuracy and relevance of the generated
output concerning their initial prompts and the current con-
text of their writing. The accuracy is verifed through domain
expertise, cross-referencing with reputable external sources, or
testing the real-world applicability by executing it. Beyond factual
accuracy, the output must also align with the user’s intentions,
which is ensured by evaluating the generated content against the
user’s original prompt. Other important aspects include verifying
the tone and style of the content and the consistency with the
content created from the previous interaction iterations.

Participants drew upon their domain expertise or general knowl-
edge to verify the generated content in certain instances. Partici-
pants with prior experience in the concerned technology were able
to leverage their knowledge to identify discrepancies in the output
(e.g., �7 leverages their experience as a developer to identify incor-
rect content about AWS access keys, “I think there are some missing
steps here. Here’s the thing, because we just created the account these
access keys will not exist at this point”). Common world knowledge
is also used for tasks like translation (e.g., “‘getting started’ doesn’t
translate to ‘à propos de départ.’ It doesn’t mean anything” [�1]).
When domain knowledge was insufcient, participants chose

1767

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

strategies such as cross-referencing with existing documen-
tation, internet search, or testing by execution. Minor details
of generated content (e.g., URLs) were checked for authenticity and
correctness by a browser search or against existing documentation.
Aspects that involved complex reasoning (e.g., code snippets or
steps for creating an AWS account as explored by �7, “let’s actually
go ahead and test all of this”) were tested through manual execution.

Participants observed the textual quality of the generated con-
tent. As detailed in section 4.3, participants desire specifcity and
coherency in the generated content (e.g., “I was hoping that [the
generated content] would be a bit more specifc when it says ‘run the
installer.’ I mean, it’s pretty obvious for the end user, but I like to make
it impossible to do the wrong thing” [�7]). Often, they resorted to
manually editing the generated content (e.g., �7 mentions “I would
remove extra information [from the generated content]. That’s my
style” and proceeded to edit manually) and frequently switched
between using the text box to prompt the LLM and manually make
changes to reach the fnal outcome.

Participants felt that human oversight and verifcation remain
indispensable for capturing technical nuances and maintaining
accuracy. The trust in generated content is contingent on having
the control to verify further and edit, as illustrated by �7, “I would
not say that I have enough trust that I can publish it and call it a
day. I would probably still want to test it, at least go through the
steps.” However, verifcation has its own challenges, considering
the security implications of LLM-generated content, as illustrated
by �7’s comment “Considering that an algorithm generated this code,
maybe we need some kind of sandbox so that it doesn’t do any damage
to my system” who later called for such a feature to be implemented
in the interface. Considering the instructional aspect of tutorials,
participants were particularly cautious as any misinformation could
signifcantly derail the learning experience (e.g., “When I was asking
where the source code for [software] was, it didn’t know, and it gave
an incorrect answer. It’d be cool if it could just touch its shoulders and
say, I don’t know, or give some kind of score about how confdent it is
about its answer” [�6]).

5.4 Refecting on Expectations and Revising
Future Interaction Goals

Users refect on their latest interaction to revise their mental
models and calibrate interaction strategies with the LLM or
update their writing objectives for the tutorial. Refection as-
sists the users in comprehending the underlying reasons for any
discrepancies between the expected and the actual output and up-
dates the mental model to manage the expectations. Users accept
the LLM’s output when the discrepancies are minimal. In addition,
they positively update their perception of the LLM’s capabilities
and form an enhanced mental model of the interaction strategies.
Conversely, when users frequently encounter signifcant discrepan-
cies and continuously need to calibrate their strategies, it signals a
disconnect between their expectations from the LLM, the prompts,
or their refection process.

We observe that the refection process is grounded in the user’s
hypothesis of the functioning of the LLM and how it handles the
prompts. For example, �4 described the working of LLM as “It isn’t
really contextually aware. It’s just pulling text and trying to fgure

out what text makes sense around that text”). However, participants
found it difcult to form these hypotheses due to the absence
of traceability between prompts and their outputs (e.g., “I’ve
modifed two things in this latest query, so the output is a little diferent
than before. I’m not sure what made it diferent” [�6]). Even when
formed, these hypotheses are not necessarily accurate (e.g., “It needs
‘machine learning’ [as a keyword] in the prompt. It doesn’t work
for any other thing” [�5]). Participants adjusted and refned their
initial hypotheses when the generated content did not align with
their expectations. For example, when the model did not generate
any content about the software they mentioned in the prompt, �4
mentioned “I think for [software], it’s even more niche. It’s not a well-
known tool. So the problem is it’s probably not much content to pull
from. It probably just ignored [software] as a tool”. Users verifed the
hypothesis with a subsequent interaction cycle or by referencing
external material. For example, �6 refers to the software’s hosted
documentation with “I’m curious to see how it’s actually listed [on the
website]. Is the [generated] text verbatim?”. Eventually, we observed
instances where the participants decided to let the LLM take control
when they were confdent in its capabilities (e.g., “There’s some kind
of diferences in confguration for diferent host OS that I know of, but
I’ll let it fgure that out for me” [�7]).

Refecting on the LLM-generated content resulted in revisions to
the writing objectives. The revisions could be towards expanding
the scope (e.g., “Nice, it even added a ‘Clean up’ section. This would
be good to elaborate on” [�7]) or towards enhancing the quality
(e.g., “I will actually verify and edit if I fnd that there’s things that
are either not working or maybe extra information. Like I mentioned,
I try to be to the point” [�7]). Participants considered the generated
content as the frst draft, which they could enhance using their
experience (e.g., “I could use this to help me bootstrap and get started
and get a basic version going. Then I can fll in the gaps” [�4]).

6 DISCUSSION
In sections 4 and 5, we described where LLMs are considered most
relevant in the tutorial writing process and highlighted the chal-
lenges writers encounter while interacting with these novel lan-
guage technologies. Building on these fndings, we discuss three
major design implications and provide recommendations for devel-
oping LLM-based tutorial writing systems. We summarize these in
Table 2. We also examine the potential limitations of our study and
propose future research directions in LLM-assisted tutorial writing.

6.1 Implications for Designing LLM-Based
Software Tutorial Writing Tools

In this section, we discuss the design implications derived from our
fndings outlined in Sections 4 and 5. We propose recommendations
to enhance the functionality and user experience of LLM-based
tutorial writing tools while focusing on the opportunities in the
existing tutorial writing practises. The recommendations highlight
three key areas: assisting writers in improving their mental models
of LLMs, enhancing the control over content generation and editing,
and verifying the accuracy and relevance of generated content.

6.1.1 Design Implication #1: Assisting Tutorial Writers in Forming
Accurate Mental Models of LLMs. As outlined in Section 5.1, the writ-
ers’ expectations and approach towards using LLMs for generating

1768

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

Table 2: Design Implications and corresponding Design Recommendations distilled from the fndings.

Design Implications Evidence Design Recommendations (DRs)

Section 6.1.1: Writers should be able to de-
velop sufciently accurate mental models to
set realistic expectations from the LLM and
to carry out appropriate evaluation of out-
comes relevant to the tutorial.

Sections: 5.1, 5.4 DR 1.1: Incorporate traceability to map code and natural lan-
guage changes between prompt-output pairs within and across
interaction cycles.
DR 1.2: Capture the provenance of the manually written and
LLM-generated content to better reason the impact of using
LLMs on their writing outcomes.

Section 6.1.2: Writers should possess clear
prompting mechanisms and be able to con-
trol tutorial-specifc content generation and
editing precisely.

Sections: 4.1, 4.2,
4.3, 5.2

DR 2.1: Separate and clearly distinguish the interface between
prompting LLM and manually inputting text.
DR 2.2: Provide a fexible interface that allows seamless switch-
ing between diegetic and non-diegetic prompting and editing
that happen at diferent stages of tutorial writing.
DR 2.3: Allow writers to incorporate and fexibly select rele-
vant sections of the current tutorial draft and prior background
research to perform targeted edits of source code or explana-
tions.

Section 6.1.3: Writers should be equipped
with diverse verifcation features to ensure
the reliability and relevance of tutorial con-
tent generated by LLMs.

Sections: 4.1, 4.2,
4.3, 5.3

DR 3.1: Provide tailored verifcation mechanisms based on the
source (e.g., incorporating research notes or reference code)
and type (e.g., code interpreters for code snippets and link
checkers for URLs) of the content type used in the tutorial.
DR 3.2: Provide features such as static analysis tools and con-
tinuous integration systems to ensure consistency in syntax
and conventions within individual code snippets and across
the combination of all snippets throughout the tutorial.

tutorials are shaped by factors such as their background research
on the tutorial topic, personal impressions of LLMs formed from
previous experiences, their curiosity to explore LLMs’ capabilities,
and their progress in the current LLM interaction cycles. In Section
5.4, we further described how the writers refect their interaction
objectives, specifed prompts, and the corresponding outputs. The
refection process contributes to changes in their mental model of
the LLM and leads to adjustments in their strategies to use the LLM
for their writing tasks. However, the mental model is often nascent,
lacking a comprehensive understanding of the underlying technol-
ogy, such as training and fne-tuning of the LLMs, the meaning and
impact of parameters like temperature, as well as efective prompt-
ing strategies [8, 67]. Prior research has observed an existence of
gulf of envisioning resulting from insufcient knowledge of LLM’s
capabilities [62]. In our study, the participants expressed the need
to understand the model’s technical boundaries and the training
data cutof date to ensure the predictions are accurate and corre-
spond to the latest software versions (Section 4.3). Ensuring better
transparency of the underlying models using model cards [44] or
explainable AI techniques [57] can be useful to address this issue.

However, expecting end users, tutorial writers in our case, to
acquire the relevant LLM-related knowledge may not be practical,
as they might not possess the required technical expertise or simply

may lack the interest to do so (e.g., “I still need to double-check ev-
erything and fgure out how to make it actually generate things you
want. Now I have to learn machine learning properly and keep up to
date with all these things. And it’s just, well, maybe I’m not going
to do that” [�1]). The writers need an efective (not necessarily
comprehensive) mental model that can help reason the impact of
their actions and what to do next. Incorporating traceability to
map code and natural language changes across LLM interac-
tions and provenance to record the tutorial’s evolution can
be two actionable design options that can ofer two benefts. First,
it assists the writers in forming efective mental models through
self-evaluation, which is hypothesized to improve metacognition
in GenAI systems [64]. Tracing the edit history over a series of
interactions helps writers better understand the efect of individual
prompts over content evolution and assists writers in calibrating
their expectations.

Second, software tutorial writing is often open-ended but con-
strained by coherence across two modalities, i.e., code and natural
language. Design features that support traceability and provenance
can be especially useful in generating both modalities when the
writers lack a clear prompting strategy and evaluation roadmap.
Previous work has demonstrated that traceability between the code
snippets and corresponding documentation attribute to improved
documentation practises [6], and consistency and accuracy of the

1769

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

overall tutorial [25]. When part of the code and its natural language
explanations of a tutorial are generated by an LLM, traceability
provides additional value to track consistency between the human-
written and AI-generated content between code and natural lan-
guage and across several interaction cycles, thereby improving the
tutorial’s accuracy.

6.1.2 Design Implication #2: Improving Control over Technical Con-
tent Generation and Editing. Writers struggle to formulate prompts
that accurately refect their content generation objectives and gener-
alize their prompting strategies across various scenarios [71]. Such
issues lead to the perception of the LLM being unpredictable. Fur-
thermore, the OpenAI playground lacks clear signifers for prompt-
ing and observing the generated content, thereby adding to the
confusion. As outlined in Section 5.2, using a single text area for
the dual purpose of prompting the LLM to generate content as
well as manually editing tutorial content resulted in the writers
struggling to diferentiate between the existing tutorial content,
the new prompts, and their outputs. To fnd a workaround, writers
formed complex yet mostly unsuccessful strategies to guide the
model, often leading to more frustration.

Given these challenges, it is crucial to explore alternative strate-
gies and interactions that could enhance the control writers have
over tutorial content generation. Previous research by Dang et al.
[11] investigated two prompting interactions – diegetic (i.e., nar-
rative style and current writing context are part of the prompt)
and non-diegetic (i.e., prompts are not part of the narrative and
are instruction-oriented). Their work suggests diegetic and non-
diegetic interactions as efective for inspiration and control, re-
spectively. We observe the benefts of both interactions in diferent
contexts. Diegetic interactions can be useful for tutorial writers in
leveraging writing templates as a part of the current writing context
(Section 4.2) and expecting the LLM to generate the tutorial accord-
ing to the template. On the other hand, writers edit the content to
meet their standards of tutorial quality. In this case, non-diegetic
prompting can enable the writers to get suitable suggestions based
on their researched material (Section 4.1) or refne specifc sections
to meet quality standards (Section 4.3). For instruction-oriented
prompting, separating input felds for LLM prompts and man-
ual text edits is extremely important to distinguish user-provided
context from tutorial content. Furthermore, writers apply a combi-
nation of these prompting strategies and even resort to manual edits
when they consider LLMs too complex to be used. To account for
these editing strategies, the system must ofer a fexible interface
that allows seamless switching between diegetic and non-
diegetic prompting and editing, allowing writers to leverage
LLMs across varying contexts.

Understanding the tutorial writing practice ofers important
hints to improve the writers’ control further when interacting with
LLMs. Tutorial writing is not a linear process but rather involves
multiple rounds of investigation before and during the tutorial
writing process to develop a better understanding of the target
technology (Section 4.1). In addition, writers include resources such
as code examples, their outputs, screenshots, and explanations to
improve the tutorial’s comprehensibility and credibility, as detailed
in Section 4.2. Allowing LLMs to reference relevant material from
the writer’s investigation, such as the existing tutorial on the same

technology, can facilitate prompting for detailed, topic-specifc
content. Therefore, enabling users to incorporate and fexibly
select specifc sections of existing material as prompt context
can be useful to create the right prompts.

6.1.3 Design Implication #3: Facilitating Verification to Ensure Tu-
torial’s Accuracy. Participants recognized the potential of LLMs
to assist in researching existing resources and even viewed LLMs
as potential stand-ins for developers (Section 4.1). However, they
expressed reservations about directly using content generated by
LLMs in their tutorials and insisted on verifying the content (Sec-
tion 5.3). The hesitation arises because writers traditionally rely on
resources authored by other human writers, allowing for a clear
judgement of their credibility implicating a sense of control [7].
Qualities like accuracy, clarity and being up-to-date are crucial
to software tutorials (Section 4.3). Therefore, having a verifable
source is critical to the writers’ confdence when synthesizing exist-
ing resources and creating new content. Despite the advancements
in novel fne-tuning [26] and prompt engineering techniques [37],
which enable LLMs to contextualize and generate more relevant
information, the tangible beneft of manual verifcation can be in-
dispensable for fostering confdence in the resulting content. Our
participants tend to verify the output against their personal exper-
tise or knowledge (Section 5.3). However, human memory is often
unreliable, subject to evaluator fatigue [5] and complex metacog-
nitive demands [64], which is suboptimal for evaluating tutorials
that demand a rigorous quality.

One way to support writers in ensuring the accuracy of LLM-
generated content is to provide tailored verifcation strategies
relevant to the source and type of each content type used in
the tutorial. Writers typically verify the LLM-generated content
by cross-referencing it with trusted external sources, leveraging
their domain knowledge, or conducting tests to assess real-world
applicability (Section 5.3). Traditionally, writers create and refer-
ence material, such as code examples and notes (Section 4.2), to
improve the accuracy and credibility of the tutorial. Allowing access
to these resources within the interface has the potential advantage
of minimizing the need for external fact-checking, thereby reduc-
ing the associated cognitive load. Verifcation techniques can difer
depending on the type of content as well. For instance, verifying
URLs requires confrming their online existence and ensuring the
relevance and accuracy of the information on the linked page. In
addition, the description of the web resource in the LLM-generated
content should accurately refect the source material. Unlike URLs,
verifying code snippets involves providing a code interpreter into
the interface to execute and ensure accuracy.

A challenge with using LLMs for tutorial writing is maintaining
consistent syntax and conventions within individual code snippets,
as well as functional integration across all the snippets in the tuto-
rial. Software tutorials often include several code snippets, which
may be parts of an individual program interspersed with explana-
tory text (e.g., an introductory Python tutorial explaining function
calls and loops) or a combination of multiple programs (e.g., a tuto-
rial on setting up a website using a web framework and a database).
In both scenarios, ensuring consistency involves two critical steps.
First, each snippet must be checked for consistency. Second, the

1770

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

snippets should collectively form a coherent and executable pro-
gram that aligns with the provided explanations. Implementing
static analysis tools and continuous integration systems trig-
gered at every revision of the tutorial content can be useful to
maintain consistency and enhance the overall quality and reliability
of the tutorial.

6.2 Limitations and Future Work
While our study provides valuable insights into using LLMs for tuto-
rial writing, we acknowledge certain limitations that highlight areas
for future work. The frst limitation concerns unrealistic expecta-
tions or insufcient AI knowledge among users in user-centred
design processes, which results in poorly built prototypes that fail
to deliver value [69, 70]. While our participants indeed lacked an
in-depth understanding of the recent AI technologies, the observa-
tions and perspectives shared by the tutorial writers while using
the LLM helped us understand their mental models of such tech-
nology and its capabilities, thereby informing their novel needs
when interacting with AI. Yildirim et al. [70] advocate for a similar
approach to enhance user-centred design for AI tools, suggesting
that demonstrating AI’s capabilities and limitations can guide user
interactions more efectively. They recommend leveraging AI ex-
perts to validate the practicality of designs arising from the study
before development. Correspondingly, our fndings emphasize the
importance of collaborative eforts between LLM developers and
system designers in the user-centred design process. Users might
be unable to clearly identify and state their requirements or needs.
In such situations, understanding both their existing practises and
how they navigate a new technology can help us identify the gap
in their understanding. Our work further hints at the importance of
scafolding users’ exploration of technology boundaries and inno-
vations, given the inexhaustible possibilities of novel use of LLMs.
In our study, we found that while the writers lacked specifc knowl-
edge about using AI for tutorial writing, they actively explored
and adapted to these gaps. This adaptability might stem from their
professional role as tutorial writers, which requires experimenta-
tion with software to develop functional tutorials. While our design
recommendation of incorporating traceability and provenance is
useful to support such user-initialized experimentation, future work
is needed to investigate the efectiveness of our recommendation
and other means.

Second, the study investigates the writers’ experiences using
the GPT-3.5 (code-davinci-002 and davinci [49]) models available
within the playground interface. Using models fne-tuned for tuto-
rial writing or interfaces tailored specifcally for tutorial writing
might result in diferent experiences for writers than we presented
in the study. However, as far as we know, such interfaces do not
currently exist. The design recommendations discussed in Section
6.1 are intended to guide the development of such novel interfaces
with specialized functionalities that can assist writers. Better tuto-
rial writing experience might also beneft from developing models
fne-tuned on software tutorials, prompt engineering techniques
like introducing code repository-specifc knowledge during prompt
design [59] and designing corresponding afordances.

The third limitation is that the writers’ strategies and percep-
tions evolve as they interact with the LLM. The study results have

implications for the usability and learnability of the system in the
short term, contributing to its adoption. However, these results
do not inform any change in perception resulting from long-term
use. Additionally, the study could not account for the infuence of
external factors on participants’ perceptions, such as public opinion
on LLMs. A longitudinal study examining the evolution of writers’
interaction strategies and perceptions over extended periods of
LLM use could further confrm the integration of LLMs in tutorial
writing processes.

7 CONCLUSION
In this paper, we describe the opportunities and challenges for
LLMs in tutorial writing. Our fndings are based on a user study
of software tutorial writers with diverse backgrounds and exper-
tise using the OpenAI playground as an exploration environment.
From the interviews, we identifed performing background research,
resource creation, and meeting writing quality standards as the three
areas that are especially relevant for LLM adoption. We observed
how the writers formulate goals, articulate intentions, observe and
verify outputs, and refect to revise the subsequent strategies when
interacting with the LLM. Based on our fndings, we surface three
design implications, which include 1) efective afordances to de-
velop accurate mental models, 2) clear prompting mechanisms and
control over tutorial content generation and editing, and 3) diverse
verifcation features that account for content type and self-created
resources. These implications hold potential for better interface
design for LLM-based tutorial creation tools and tools that support
the generation of both natural language and code.

ACKNOWLEDGMENTS
We thank our anonymous participants for their valuable insights,
and the DIS reviewers and ACs for their constructive feedback
on the manuscript. We thank Deeksha Arya for her support and
invaluable feedback during the qualitative coding process. Avinash
Bhat and Jin L.C. Guo are supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C. Shepherd. 2020. Software documentation:
the practitioners’ perspective. In Proceedings of the 42nd International Conference
on Software Engineering (ICSE). ACM, New York, NY, USA, 590–601. https:
//doi.org/10.1145/3377811.3380405

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In Proceedings of the 41st International Conference on Software
Engineering (ICSE). IEEE / ACM, 1199–1210. https://doi.org/10.1109/ICSE.2019.
00122

[3] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Why people
contribute software documentation?. In Proceedings of the 17th International
Conference on Cooperative and Human Aspects of Software Engineering (CHASE).
https://doi.org/10.1145/3641822.3641881

[4] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111. https:
//doi.org/10.1145/3586030

[5] Advait Bhat, Saaket Agashe, Parth Oberoi, Niharika Mohile, Ravi Jangir, and
Anirudha Joshi. 2023. Interacting with Next-Phrase Suggestions: How Suggestion
Systems Aid and Infuence the Cognitive Processes of Writing. In Proceedings
of the 28th International Conference on Intelligent User Interfaces (IUI ’23). ACM,
New York, NY, USA, 436–452. https://doi.org/10.1145/3581641.3584060

[6] Avinash Bhat, Austin Coursey, Grace Hu, Sixian Li, Nadia Nahar, Shurui Zhou,
Christian Kästner, and Jin L.C. Guo. 2023. Aspirations and Practice of ML Model

1771

https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1145/3641822.3641881
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3581641.3584060

Do LLMs Meet the Needs of Sofware Tutorial Writers? Opportunities and Design Implications DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

Documentation: Moving the Needle with Nudging and Traceability. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23).
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3544548.3581518

[7] Olof C. Biermann, Ning F. Ma, and Dongwook Yoon. 2022. From Tool to
Companion: Storywriters Want AI Writers to Respect Their Personal Values
and Writing Strategies. In Proceedings of the 2022 ACM Designing Interactive
Systems Conference (DIS ’22). ACM, New York, NY, USA, 1209–1227. https:
//doi.org/10.1145/3532106.3533506

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jefrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems (NeurIPS ’20, Vol. 33). Curran Associates,
Inc., Red Hook, NY, USA, 1877–1901.

[9] Tuhin Chakrabarty, Vishakh Padmakumar, and He He. 2022. Help me write
a Poem - Instruction Tuning as a Vehicle for Collaborative Poetry Writing. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP ’22). Association for Computational Linguistics, Online, 6848–
6863. https://doi.org/10.18653/v1/2022.emnlp-main.460

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Bal-
aji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained on Code. (2021). https:
//doi.org/10.48550/arxiv.2107.03374

[11] Hai Dang, Sven Goller, Florian Lehmann, and Daniel Buschek. 2023. Choice
Over Control: How Users Write with Large Language Models using Diegetic and
Non-Diegetic Prompting. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23). ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3544548.3580969

[12] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero
Molino, Jason Yosinski, and Rosanne Liu. 2020. Plug and Play Language Models:
A Simple Approach to Controlled Text Generation. In Proceedings of the 8th
International Conference on Learning Representations (ICLR). OpenReview.net,
Online.

[13] Graham Dove, Kim Halskov, Jodi Forlizzi, and John Zimmerman. 2017. UX Design
Innovation: Challenges for Working with Machine Learning as a Design Material.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 278–288. https://doi.org/10.1145/3025453.
3025739

[14] Wanyu Du, Zae Myung Kim, Vipul Raheja, Dhruv Kumar, and Dongyeop Kang.
2022. Read, Revise, Repeat: A System Demonstration for Human-in-the-loop
Iterative Text Revision. In Proceedings of the 1st Workshop on Intelligent and
Interactive Writing Assistants (In2Writing ’22). Association for Computational
Linguistics, Online, 96–108. https://doi.org/10.18653/v1/2022.in2writing-1.14

[15] Patrick M. J. Dubois, Volodymyr Dziubak, and Andrea Bunt. 2017. Tell Me More!
Soliciting Reader Contributions to Software Tutorials. In Proceedings of the 43rd
Graphics Interface Conference (GI ’17). Canadian Human-Computer Communica-
tions Society/ACM, New York, USA, 16–23. https://doi.org/10.20380/GI2017.03

[16] Linda Flower and John R. Hayes. 1981. A Cognitive Process Theory of Writing.
College Composition and Communication 32, 4 (1981), 365–387. https://doi.org/
10.2307/356600

[17] Katy Gero, Alex Calderwood, Charlotte Li, and Lydia Chilton. 2022. A Design
Space for Writing Support Tools Using a Cognitive Process Model of Writing. In
Proceedings of the 1st Workshop on Intelligent and Interactive Writing Assistants
(In2Writing ’22). Association for Computational Linguistics, Online, 11–24. https:
//doi.org/10.18653/v1/2022.in2writing-1.2

[18] Katy Ilonka Gero, Vivian Liu, and Lydia Chilton. 2022. Sparks: Inspiration for
Science Writing using Language Models. In Proceedings of the 2022 ACM Designing
Interactive Systems Conference (DIS ’22). ACM, New York, NY, USA, 1002–1019.
https://doi.org/10.1145/3532106.3533533

[19] Maliheh Ghajargar, Jefrey Bardzell, and Love Lagerkvist. 2022. A Redhead
Walks into a Bar: Experiences of Writing Fiction with Artifcial Intelligence. In
Proceedings of the 25th International Academic Mindtrek Conference (Academic
Mindtrek ’22). ACM, New York, NY, USA, 230–241. https://doi.org/10.1145/
3569219.3569418

[20] Shiry Ginosar, Luis Fernando De Pombo, Maneesh Agrawala, and Björn Hart-
mann. 2013. Authoring multi-stage code examples with editable code histo-
ries. In Proceedings of the 26th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’13). ACM, New York, NY, USA, 485–494. https:
//doi.org/10.1145/2501988.2502053

[21] Steven M. Goodman, Erin Buehler, Patrick Clary, Andy Coenen, Aaron Donsbach,
Tifanie N. Horne, Michal Lahav, Robert MacDonald, Rain Breaw Michaels, Ajit
Narayanan, Mahima Pushkarna, Joel Riley, Alex Santana, Lei Shi, Rachel Sweeney,
Phil Weaver, Ann Yuan, and Meredith Ringel Morris. 2022. LaMPost: Design and
Evaluation of an AI-assisted Email Writing Prototype for Adults with Dyslexia.
In Proceedings of the 24th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS ’22). ACM, New York, NY, USA, 24:1–24:18. https:
//doi.org/10.1145/3517428.3544819

[22] Mitchell L. Gordon and Philip J. Guo. 2015. Codepourri: Creating visual coding
tutorials using a volunteer crowd of learners. In 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC ’15). IEEE Computer Society,
13–21. https://doi.org/10.1109/vlhcc.2015.7357193

[23] Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How Many Interviews Are
Enough?: An Experiment with Data Saturation and Variability. Field Methods 18,
1 (2006), 59–82. https://doi.org/10.1177/1525822X05279903

[24] Andrew Head, Elena L. Glassman, Björn Hartmann, and Marti A. Hearst. 2018.
Interactive Extraction of Examples from Existing Code. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173659

[25] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann.
2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source
Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). ACM, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3313831.3376798

[26] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proceedings of the 10th International Conference on Learning
Representations (ICLR). OpenReview.net, Online.

[27] Daphne Ippolito, Ann Yuan, Andy Coenen, and Sehmon Burnam. 2022. Creative
Writing with an AI-Powered Writing Assistant: Perspectives from Professional
Writers. (2022). https://doi.org/10.48550/arxiv.2211.05030

[28] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of Hallucination
in Natural Language Generation. Comput. Surveys 55, 12 (2023), 38 pages. https:
//doi.org/10.1145/3571730

[29] Amela Karahasanovic, Unni Nyhamar Hinkel, Dag I. K. Sjøberg, and Richard C.
Thomas. 2009. Comparing of feedback-collection and think-aloud methods in
program comprehension studies. Behaviour & Information Technology 28, 2 (2009),
139–164. https://doi.org/10.1080/01449290701682761

[30] Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Cod-
ing Tutorials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 321–326.
https://doi.org/10.1145/3017680.3017728

[31] Max Kreminski and Chris Martens. 2022. Unmet Creativity Support Needs in
Computationally Supported Creative Writing. In Proceedings of the 1st Workshop
on Intelligent and Interactive Writing Assistants (In2Writing ’22). Association for
Computational Linguistics, Online, 74–82. https://doi.org/10.18653/v1/2022.
in2writing-1.11

[32] Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. 2013. Community
enhanced tutorials: improving tutorials with multiple demonstrations. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 1779–1788. https://doi.org/10.1145/2470654.2466235

[33] Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum,
Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David
Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madiha Zahrah Choksi,
Senjuti Dutta, Jin L. C. Guo, Md Naimul Hoque, Yewon Kim, Simon Knight,
Seyed Parsa Neshaei, Antonette Shibani, Disha Shrivastava, Lila Shrof, Agnia
Sergeyuk, Jessi Stark, Sarah Sterman, Sitong Wang, Antoine Bosselut, Daniel
Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy
Pea, Eugenia Ha Rim Rho, Zejiang Shen, and Pao Siangliulue. 2024. A Design
Space for Intelligent and Interactive Writing Assistants. In Proceedings of the 2024
CHI Conference on Human Factors in Computing Systems (CHI ’24). ACM, New
York, NY, USA. https://doi.org/10.1145/3613904.3642697

[34] Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). ACM, New York, NY, USA, 388:1–388:19. https://doi.org/10.1145/
3491102.3502030

[35] Yoonjoo Lee, Tae Soo Kim, Minsuk Chang, and Juho Kim. 2022. Interactive
Children’s Story Rewriting Through Parent-Children Interaction. In Proceedings
of the 1st Workshop on Intelligent and Interactive Writing Assistants (In2Writing
’22). Association for Computational Linguistics, Online, 62–71. https://doi.org/
10.18653/v1/2022.in2writing-1.9

1772

https://doi.org/10.1145/3544548.3581518
https://doi.org/10.1145/3532106.3533506
https://doi.org/10.1145/3532106.3533506
https://doi.org/10.18653/v1/2022.emnlp-main.460
https://doi.org/10.48550/arxiv.2107.03374
https://doi.org/10.48550/arxiv.2107.03374
https://doi.org/10.1145/3544548.3580969
https://doi.org/10.1145/3025453.3025739
https://doi.org/10.1145/3025453.3025739
https://doi.org/10.18653/v1/2022.in2writing-1.14
https://doi.org/10.20380/GI2017.03
https://doi.org/10.2307/356600
https://doi.org/10.2307/356600
https://doi.org/10.18653/v1/2022.in2writing-1.2
https://doi.org/10.18653/v1/2022.in2writing-1.2
https://doi.org/10.1145/3532106.3533533
https://doi.org/10.1145/3569219.3569418
https://doi.org/10.1145/3569219.3569418
https://doi.org/10.1145/2501988.2502053
https://doi.org/10.1145/2501988.2502053
https://doi.org/10.1145/3517428.3544819
https://doi.org/10.1145/3517428.3544819
https://doi.org/10.1109/vlhcc.2015.7357193
https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.48550/arxiv.2211.05030
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1080/01449290701682761
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.18653/v1/2022.in2writing-1.11
https://doi.org/10.18653/v1/2022.in2writing-1.11
https://doi.org/10.1145/2470654.2466235
https://doi.org/10.1145/3613904.3642697
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.18653/v1/2022.in2writing-1.9
https://doi.org/10.18653/v1/2022.in2writing-1.9
https://OpenReview.net
https://OpenReview.net

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

[36] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education (ITiCSE 2023). ACM,
New York, NY, USA, 124–130. https://doi.org/10.1145/3587102.3588785

[37] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems (NeurIPS ’20, Vol. 33). Curran Associates, Inc., Red Hook, NY, USA, 9459–
9474.

[38] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Map-
ping Natural Language Instructions to Mobile UI Action Sequences. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 8198–8210. https:
//doi.org/10.18653/v1/2020.acl-main.729

[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. Comput. Surveys 55, 9
(2023), 35 pages. https://doi.org/10.1145/3560815

[40] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application
Programming Interface Documentation: What Do Software Developers Want?
Journal of Technical Writing and Communication 48, 3 (2018), 295–330. https:
//doi.org/10.1177/0047281617721853

[41] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2019. How devel-
opers use API documentation: an observation study. Communication Design
Quarterly 7, 2 (2019), 40–49. https://doi.org/10.1145/3358931.3358937

[42] Samantha B. Meyer and Belinda Lunnay. 2013. The Application of Abductive and
Retroductive Inference for the Design and Analysis of Theory-Driven Sociological
Research. Sociological Research Online 18, 1 (2013), 86–96. https://doi.org/10.
5153/sro.2819

[43] Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman, and Richard Evans. 2023.
Co-Writing Screenplays and Theatre Scripts with Language Models: Evaluation
by Industry Professionals. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23). ACM, New York, NY, USA, 355:1–355:34.
https://doi.org/10.1145/3544548.3581225

[44] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model Cards for Model Reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency (FAT* ’19). ACM, New York, NY, USA, 220–229.
https://doi.org/10.1145/3287560.3287596

[45] Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media GUI and
Command-Line App Tutorials Using Operating-System-Wide Activity Tracing.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (UIST ’17). ACM, New York, NY, USA, 703–714. https://doi.org/10.
1145/3126594.3126628

[46] Jakob Nielsen and Thomas K. Landauer. 1993. A mathematical model of the
fnding of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems (INTERCHI). ACM, 206–213.
https://doi.org/10.1145/169059.169166

[47] OpenAI. 2021. OpenAI Codex, openai.com. https://openai.com/blog/openai-
codex. [Accessed 26-04-2024].

[48] OpenAI. 2022. OpenAI Playground, openai.com. https://platform.openai.com/
playground/complete. [Accessed 03-05-2024].

[49] OpenAI. 2023. OpenAI Deprecations, openai.com. https://platform.openai.com/
docs/deprecations. [Accessed 03-05-2024].

[50] Chris Parnin, Christoph Treude, and Margaret-Anne D. Storey. 2013. Blogging
developer knowledge: Motivations, challenges, and future directions. In Proceed-
ings of the IEEE 21st International Conference on Program Comprehension (ICPC).
IEEE Computer Society, 211–214. https://doi.org/10.1109/icpc.2013.6613850

[51] Dewayne E. Perry, Nancy A. Staudenmayer, and Lawrence G. Votta. 1994. People,
Organizations, and Process Improvement. IEEE Software 11, 4 (1994), 36–45.
https://doi.org/10.1109/52.300082

[52] Martin P. Robillard, Deeksha M. Arya, Neil A. Ernst, Jin L.C. Guo, Maxime
Lamothe, Mathieu Nassif, Nicole Novielli, Alexander Serebrenik, Igor Stein-
macher, and Klaas-Jan Stol. 2024. Communicating Study Design Trade-ofs in
Software Engineering. ACM Transactions on Software Engineering and Methodol-
ogy (2024). https://doi.org/10.1145/3649598

[53] Melissa Roemmele. 2021. Inspiration through Observation: Demonstrating the
Infuence of Automatically Generated Text on Creative Writing. In Proceedings of
the 12th International Conference on Computational Creativity (ICCC). Association
for Computational Creativity (ACC), 52–61.

[54] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and
Justin D. Weisz. 2023. The Programmer’s Assistant: Conversational Interaction
with a Large Language Model for Software Development. In Proceedings of the
28th International Conference on Intelligent User Interfaces (IUI ’23’). ACM, New
York, NY, USA, 491–514. https://doi.org/10.1145/3581641.3584037

Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo

[55] Interagency Language Roundtable. 2021. Interagency Language Roundtable
Language Skill Level Descriptions, govtilr.org. https://www.govtilr.org/Skills/
ILRscale2.htm. [Accessed 19-05-2024].

[56] Carolyn B. Seaman. 2008. Qualitative Methods. In Guide to Advanced Empirical
Software Engineering. Springer, 35–62. https://doi.org/10.1007/978-1-84800-044-
5_2

[57] Hua Shen, Chieh-Yang Huang, Tongshuang Wu, and Ting-Hao Kenneth Huang.
2023. ConvXAI: Delivering Heterogeneous AI Explanations via Conversations
to Support Human-AI Scientifc Writing. In Companion Publication of the 2023
Conference on Computer Supported Cooperative Work and Social Computing (CSCW
’23 Companion). ACM, New York, NY, USA, 384–387. https://doi.org/10.1145/
3584931.3607492

[58] Zejiang Shen, Tal August, Pao Siangliulue, Kyle Lo, Jonathan Bragg, Jef Hammer-
bacher, Doug Downey, Joseph Chee Chang, and David A. Sontag. 2023. Beyond
Summarization: Designing AI Support for Real-World Expository Writing Tasks.
(2023). https://doi.org/10.48550/arxiv.2304.02623

[59] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 2023. Repository-Level
Prompt Generation for Large Language Models of Code. In Proceedings of the 40th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 202). PMLR, 31693–31715. https://proceedings.mlr.press/v202/
shrivastava23a.html

[60] Janice Singer, Susan Elliott Sim, and Timothy C. Lethbridge. 2008. Software
Engineering Data Collection for Field Studies. In Guide to Advanced Empirical
Software Engineering. Springer, 9–34. https://doi.org/10.1007/978-1-84800-044-
5_1

[61] Karen M Staller. 2021. Big enough? Sampling in qualitative inquiry. Qualitative
Social Work 20, 4 (2021), 897–904. https://doi.org/10.1177/14733250211024516

[62] Hariharan Subramonyam, Christopher Lawrence Pondoc, Colleen M. Seifert, Ma-
neesh Agrawala, and Roy Pea. 2023. Bridging the Gulf of Envisioning: Cognitive
Design Challenges in LLM Interfaces. (2023). https://doi.org/10.48550/arxiv.2309.
14459

[63] Jon Swain. 2018. A Hybrid Approach to Thematic Analysis in Qualitative Research:
Using a Practical Example. SAGE Publications Ltd. https://doi.org/10.4135/
9781526435477

[64] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2023. The Metacognitive Demands and
Opportunities of Generative AI. (2023). https://doi.org/10.48550/arxiv.2312.10893

[65] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems (CHI ’22). ACM, New York, NY, USA, 332:1–332:7.
https://doi.org/10.1145/3491101.3519665

[66] April Yi Wang, Andrew Head, Ashley Ge Zhang, Steve Oney, and Christopher
Brooks. 2023. Colaroid: A Literate Programming Approach for Authoring Ex-
plorable Multi-Stage Tutorials. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI ’23). ACM, New York, NY, USA, 798:1–
798:22. https://doi.org/10.1145/3544548.3581525

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. 35 (2022), 24824–24837.

[68] Daijin Yang, Yanpeng Zhou, Zhiyuan Zhang, Toby Jia-Jun Li, and Ray LC. 2022.
AI as an Active Writer: Interaction Strategies with Generated Text in Human-AI
Collaborative Fiction Writing. In Joint Proceedings of the IUI 2022 Workshops:
APEx-UI, HAI-GEN, HEALTHI, HUMANIZE, TExSS, SOCIALIZE co-located with the
ACM International Conference on Intelligent User Interfaces (IUI) (CEUR Workshop
Proceedings, Vol. 3124). CEUR-WS.org, Online, 56–65.

[69] Qian Yang, Aaron Steinfeld, Carolyn P. Rosé, and John Zimmerman. 2020. Re-
examining Whether, Why, and How Human-AI Interaction Is Uniquely Difcult to
Design. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/
3313831.3376301

[70] Nur Yildirim, Changhoon Oh, Deniz Sayar, Kayla Brand, Supritha Challa, Violet
Turri, Nina Crosby Walton, Anna Elise Wong, Jodi Forlizzi, James McCann, and
John Zimmerman. 2023. Creating Design Resources to Scafold the Ideation
of AI Concepts. In Proceedings of the 2023 ACM Designing Interactive Systems
Conference (DIS ’23). ACM, New York, NY, USA, 2326–2346. https://doi.org/10.
1145/3563657.3596058

[71] J. D. Zamfrescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23). ACM, New York, NY, USA, 437:1–437:21. https:
//doi.org/10.1145/3544548.3581388

[72] Mingyuan Zhong, Gang Li, Peggy Chi, and Yang Li. 2021. HelpViz: Automatic
Generation of Contextual Visual Mobile Tutorials from Text-Based Instructions.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST ’21). ACM, New York, NY, USA, 1144–1153. https://doi.org/10.1145/3472749.
3474812

1773

https://doi.org/10.1145/3587102.3588785
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.1145/3560815
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.5153/sro.2819
https://doi.org/10.5153/sro.2819
https://doi.org/10.1145/3544548.3581225
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3126594.3126628
https://doi.org/10.1145/3126594.3126628
https://doi.org/10.1145/169059.169166
https://openai.com/blog/openai-codex
https://openai.com/blog/openai-codex
https://platform.openai.com/playground/complete
https://platform.openai.com/playground/complete
https://platform.openai.com/docs/deprecations
https://platform.openai.com/docs/deprecations
https://doi.org/10.1109/icpc.2013.6613850
https://doi.org/10.1109/52.300082
https://doi.org/10.1145/3649598
https://doi.org/10.1145/3581641.3584037
https://www.govtilr.org/Skills/ILRscale2.htm
https://www.govtilr.org/Skills/ILRscale2.htm
https://doi.org/10.1007/978-1-84800-044-5_2
https://doi.org/10.1007/978-1-84800-044-5_2
https://doi.org/10.1145/3584931.3607492
https://doi.org/10.1145/3584931.3607492
https://doi.org/10.48550/arxiv.2304.02623
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1177/14733250211024516
https://doi.org/10.48550/arxiv.2309.14459
https://doi.org/10.48550/arxiv.2309.14459
https://doi.org/10.4135/9781526435477
https://doi.org/10.4135/9781526435477
https://doi.org/10.48550/arxiv.2312.10893
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3563657.3596058
https://doi.org/10.1145/3563657.3596058
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3472749.3474812
https://doi.org/10.1145/3472749.3474812
https://CEUR-WS.org
https://govtilr.org
https://openai.com
https://openai.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tool Support for Authoring Software Tutorials
	2.2 Intelligent and Interactive Assistants for Generating Code and Text

	3 Study Design
	3.1 Participants and Recruitment
	3.2 User Study Procedure
	3.3 Data Analysis

	4 Findings from Semi-Structured Interview
	4.1 Assisting with Research of Background Concepts
	4.2 Creating Instructional Code and Text Content
	4.3 Meeting Tutorial Quality Standards and the Needs of Readers

	5 Findings from Participant Observation
	5.1 Formulating Expectations and Goals of Interaction
	5.2 Articulating Goals and Intentions into Prompts
	5.3 Observing and Verifying the LLM Generated Output
	5.4 Reflecting on Expectations and Revising Future Interaction Goals

	6 Discussion
	6.1 Implications for Designing LLM-Based Software Tutorial Writing Tools
	6.2 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References

