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Figure 1: Depiction of Norman’s Seven Stages of Action examined in the context of interactions with the LLM.

ABSTRACT

Despite the potential of Large Language Models (LLMs) as writing
assistants, they are plagued by issues like coherence and fluency
of the model output, trustworthiness, ownership of the generated
content, and predictability of model performance, thereby limiting
their usability. In this position paper, we propose to adopt Norman'’s
seven stages of action as a framework to approach the interaction
design of intelligent writing assistants. We illustrate the frame-
work’s applicability to writing tasks by providing an example of
software tutorial authoring. The paper also discusses the frame-
work as a tool to synthesize research on the interaction design
of LLM-based tools and presents examples of tools that support
the stages of action. Finally, we briefly outline the potential of a
framework for human-LLM interaction research.

1 INTRODUCTION

Intelligent writing assistants have been widely explored for various
writing goals and activities [8]. The recent progress in writing assis-
tants has been centred around Large Language Models (LLMs) [22],
using which humans can generate content following the intent
provided as a prompt. The notable advancements in LLMs like
ChatGPT! and its adoption in everyday products? highlight their
potential as writing assistants. However, the human interaction

!https://openai.com/blog/chatgpt
Zhttps://openai.com/blog/chatgpt-plugins

with such assistants exposes major limitations related to their us-
ability, such as coherence and fluency of the model output [9, 21],
trustworthiness [10], as well as ownership [1] of the generated
content and the predictability of model performance [9, 12]. These
issues often result in users being unable to use the tools effectively
to achieve their writing goals and sometimes abandoning them
entirely.

While previous works [4, 8, 14] have investigated the interaction
aspects of writing assistants to some extent, there is no dedicated
effort in meeting end-to-end writing objectives and approaching
their interactions from a usability standpoint. We draw inspiration
from these studies and existing design literature to investigate the
interaction design in intelligent writing assistants supported by
LLMs with a focus on human actions. We further propose to adopt
Norman’s seven stages of action [17] as a framework to guide the
design of LLM-supported intelligent writing assistants and discuss
its implication on usability.

2 SEVEN STAGES OF ACTION

Norman’s seven stages of action is a cyclical cognitive model com-
monly used to comprehend the users’ mental processes and corre-
sponding physical action primarily employed to guide the interac-
tion design of a system. As depicted in Figure 1, the seven stages of
action consists of (a) goal formation, (b) plan, (c) specify, (d) perform,
(e) perceive, () interpret, and (g) compare. The plan, specify, and
perform stages form the execution phase, and perceive, interpret
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and compare stages form the evaluation phase of the interaction.
The user’s interactions depend on a mental model of the system
formed by users’ prior beliefs. We posit that this framework offers
the opportunity to design and evaluate interfaces that support fine-
grained actions at different stages when interacting with LLMs. We
propose that an effective design for LLM-based writing assistants
must answer the questions pertaining to the different stages in
order to guide the design and provide the necessary capabilities to
the user.

To illustrate our idea further, we provide an example largely
inspired by our initial attempt to leverage OpenAI’'s Codex [2] in
the task of writing software tutorials. In a typical interaction, the
user starts by forming an initial goal that they want to accomplish,
e.g., to write a tutorial for plotting data points with matplotlib. Next,
they plan the goal by dividing it into pertinent parts which can
guide them towards querying the writing assistant. For example, the
overall goal can be divided into first writing tutorial sections such
as producing relevant commands for library installation in different
environments, then generating and explaining code snippets, and
lastly improving the readability of the tutorial. Here, an individual
step can also be considered a sub-goal, albeit with a smaller scope,
and can follow multiple iterations of the action framework. When
the users prompt the writing assistant, they tend to specify and later
perform their requirement in the writing assistant interface, e.g.,
“Write a code snippet to plot a scatter plot using matplotlib given the
data points in a Python list and provide an explanation of the code.”.
The specify stage can have mechanisms to suggest alternate prompts
to the model and the perform stage can have different interface
features to edit and update the prompts. The users’ knowledge
about the task and domain, and their existing conceptual models
inform the execution phase. Once the writing assistant returns
an output, the user perceives and interprets it according to their
knowledge and expertise and updates their existing mental models.
For example, a user with extensive knowledge of using matplotlib
might be able to better perceive any unusual content or errors in the
generated code. It might also be necessary to compare the output
with resources in different environments, e.g., by executing the
generated code snippet in an IDE or running any existing unit tests.
Asking questions that are relevant to each stage can identify the
crucial interactions and guide the design of a writing assistant to
support the tutorial authoring task.

3 DISCUSSION

Norman’s seven stages of action framework complement the Cogni-
tive Process Theory of Writing [6] as discussed by Gero et al. [8] in
their study on the design space of writing assistants. The Cognitive
Process Theory of Writing identifies several key processes that oc-
cur during the writing process such as generating ideas, organizing
and setting writing goals, and revising the written content. The
stages of action can be introduced during each of these cognitive
processes to incorporate LLMs as complementary agents that assist
the writers. Given the effectiveness exhibited by the LLMs in differ-
ent writing tasks, it might be necessary to consider interaction as a
dimension while studying the design space of writing tools. Notably,
a recent study by Lee et al. [14] evaluated the LLMs based on their
performance in a human-LLM interactive setting and emphasized
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the importance of investigating such interactions to better assess
the model. Inspired by these studies, we propose introducing the
seven stages of action framework to extend the discussion around
capabilities and interactions required in LLM-based tools and the
corresponding implications.

The seven stages of action framework facilitates the synthesis
of existing research on the interaction strategies employed in LLM-
based tools, indicating a (perhaps undesirable) emphasis on the
execution stage. Existing strategies such as chaining prompts [20],
which addresses how to design prompts, can be considered as the
effort supporting the planning and specification stages. Another
example of a tool supporting the execution phase is PromptMaker
[13] which provides alternative interfaces for designing prompts.

Specifically, in the case of interactions in LLM-based writing
assistants, the meta-prompting strategy in Wordcraft [22] provides
alternative prompts to the users, assisting in the specification stage.
TaleBrush [5] introduces an alternative sketch input to the model
for steering the content generation, demonstrating the interaction
possibilities in the specify and perform stages. In the evaluation
phase, PromptChainer [19] visualizes the output at every step in
the prompt design, enabling better interaction cycles by providing
effective mappings between the user specification and LLM output.

Viewing the human-LLM interaction through the lens of the
seven stages of action framework can potentially help to better man-
age and address the associated challenges. For instance, using LLMs
as a backend for writing assistants comes with risks [18] involving
fairness issues like discrimination based on social stereotypes and
targeted hate speech. While there are strategies to identify [16] and
limit® certain cases of misuse, it would be extremely challenging,
if not impossible, to entirely moderate the interaction due to its
open-ended nature [7]. In some situations, moderation might even
be unacceptable considering the fine line between creative and
objectionable output [12]. Understanding current mental models of
human-LLM interaction and decomposing them into stages with
specific motives can potentially facilitate content moderation. For
example, an assistant that employs the seven stages can leverage
the plan stage to define and moderate the scope of the output and
the specify stage to supervise the prompt and ensure the user does
not request any undesirable content. Interpret and compare stages
can be used to verify the relevance of the output and mitigate any
undesired content.

One of the challenges that we foresee with using the framework
is that the distinction between the seven stages is not always appar-
ent, especially when dealing with complex tasks such as writing.
For instance, it can be difficult to discern the boundary between
the perceive and interpret stages of the output, as these processes
often occur simultaneously and interactively. A rigid adherence
to the framework may not be feasible in all cases. To address this
limitation, the designers can adopt a flexible approach that takes the
unique characteristics of the task and the user’s needs into account
and construe the designs specifically to the task. Depending on
the use case, the designers can identify certain stages to pay more
attention to or realize the stages differently.

For example, while the compare stage for assistants dealing with
software tutorials and research writing both might be trying to

Shttps://platform.openai.com/docs/guides/moderation
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address the same design goal of ensuring the output is accurate,
the way to address it for the former use case can be by execut-
ing the code/tutorial while the latter use case can address it by
providing links to digital libraries for verifiable information. Any
nuances and task-specific requirements can potentially be identi-
fied by using user-centric design methods, such as user interviews
or participatory design and can be leveraged by the designers to
create solutions that are tailored to the goal.

Conclusion. We maintain that the adoption of Norman’s seven
stages of action as a framework to explore user actions with LLM-
based writing assistants can provide a valuable structure to realize
and design fine-grained interactions across goal formation, execu-
tion, and evaluation phases. Analyzing the tools and their features
across the interaction design dimensions laid out by the framework
can address specific usability concerns in the design of LLM-based
writing tools. More ambitiously, they indicate potential avenues
for research in human-LLM interactions that are currently under-
represented, such as alignment to human preferences [3], effective
prompt design [15] and explainability and interpretability of model
outputs [11].
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